Volume 40 Issue 2
Mar.  2021
Turn off MathJax
Article Contents
Zhao Xin, Sun Shutang, Xie Xianjun. Synthesis of thioarsenate compounds and their occurrence characteristics in groundwater: A case study of Datong Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(2): 131-137. doi: 10.19509/j.cnki.dzkq.2021.0141
Citation: Zhao Xin, Sun Shutang, Xie Xianjun. Synthesis of thioarsenate compounds and their occurrence characteristics in groundwater: A case study of Datong Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(2): 131-137. doi: 10.19509/j.cnki.dzkq.2021.0141

Synthesis of thioarsenate compounds and their occurrence characteristics in groundwater: A case study of Datong Basin

doi: 10.19509/j.cnki.dzkq.2021.0141
  • Received Date: 23 Apr 2020
  • As an important occurrence form of arsenic in sulfur-rich groundwater, thioarsenate plays a very important role in its migration and transformation. However, the standard synthesis method of thioarsenate is complex and the occurrence characteristics and influencing factors in low temperature groundwater are rarely reported. In this paper, firstly, the synthesis method of thioarsenate reference material was improved, the standard reference material of thioarsenate was synthesized by hydrothermal method, and the analytical method of thioarsenate based on HPLC-ICPMS was established. The detection limit of this method was 0.01 μg/L. The effects of different preservation conditions on the stability of thioarsenate compounds were discussed. It was found that quick freezing of dry ice at -20℃ was the best way to keep the stability of thioarsenate samples in groundwater. The above method was used to analyze thioarsenate in groundwater in Datong Basin. The results showed that thioarsenate was detected in 40% of the water samples, and the highest concentrate was 209.90 μg/L. The weak alkaline reduction condition is beneficial to the occurrence of thioarsenate, and the sulfide concentration plays an important role in controlling the formation of thioarsenate. The in-depth study of thioarsenate in groundwater is helpful to reveal the law of migration and transformation of arsenic in sulfur-rich groundwater and is of great significance to enrich the genetic theory of high-arsenic groundwater.

     

  • loading
  • [1]
    Nickson R, Mcarthur J, Burgess W, et al. Arsenic poisoning of Bangladesh groundwater[J]. Nature, 1998, 395: 338-347. doi: 10.1038/26387
    [2]
    Nordstrom D K. Worldwide occurrences of arsenic in ground water[J]. Science, 2002, 296: 2143-2145. doi: 10.1126/science.1072375
    [3]
    Wang Y X, Pi K F, Fendorf S, et al. Sedimentogenesis and hydrobiogeochemistry of high arsenic Late Pleistocene-Holocene aquifer systems[J]. Earth-Science Reviews, 2019, 189: 79-98. doi: 10.1016/j.earscirev.2017.10.007
    [4]
    Xie X J, Wang Y X, Ellis A, et al. The sources of geogenic arsenic in aquifers at Datong Basin, northern China: Constraints from isotopic and geochemical data[J]. Journal of Geochemical Exploration, 2011, 110(2): 155-166. doi: 10.1016/j.gexplo.2011.05.006
    [5]
    Xie X J, Wang Y X, Su C L. Hydrochemical and sediment biomarker evidence of the impact of organic matter biodegradation on arsenic mobilization in shallow aquifers of Datong Basin, China[J]. Water Air and Soil Pollution, 2012, 223(2): 483-498. doi: 10.1007/s11270-011-0875-9
    [6]
    何俊蓉, 谢先军, 池泽涌, 等. 古气候变化对大同盆地第四纪沉积物中砷富集过程的影响[J]. 地质科技情报, 2019, 38(5): 212-221. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905023.htm
    [7]
    袁晓芳, 邓娅敏, 杜尧, 等. 江汉平原高砷地下水稳定碳同位素特征及其指示意义[J]. 地质科技通报, 2020, 39(5): 156-163. http://dzkjqb.cug.edu.cn/CN/abstract/abstract10061.shtml
    [8]
    张丽萍, 谢先军, 李俊霞, 等. 大同盆地地下水中砷的形态、分布及其富集过程研究[J]. 地质科技情报, 2014, 33(1): 178-189. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201401028.htm
    [9]
    Pi K F, Wang Y X, Xie X J, et al. Role of sulfur redox cycling on arsenic mobilization in aquifers of Datong Basin, northern China[J]. Applied Geochemistry, 2017, 77: 31-43. doi: 10.1016/j.apgeochem.2016.05.019
    [10]
    Pi K F, Wang Y X, Xie X J, et al. Remediation of arsenic-contaminated groundwater by in-situ stimulating biogenic precipitation of iron sulfides[J]. Water Research, 2017, 109: 337-346. doi: 10.1016/j.watres.2016.10.056
    [11]
    Herath I, Vithanage M, Seneweera S, et al. Thiolated arsenic in natural systems: What is current, what is new and what needs to be known?[J]. Environment International, 2018, 115: 370-386. doi: 10.1016/j.envint.2018.03.027
    [12]
    Planer-Friedrich B, London J, McCleskey R B, et al. Thioarsenates in geothermal waters of Yellowstone National Park: Determination, preservation, and geochemical importance[J]. Environmental Science & Technology, 2007, 41(15): 5245-5251. http://www.tandfonline.com/servlet/linkout?suffix=CIT0036&dbid=8&doi=10.1080%2F01490451.2010.490078&key=17822086
    [13]
    庄亚芹, 郭清海, 刘明亮, 等. 高温富硫化物热泉中硫代砷化物存在形态的地球化学模拟: 以云南腾冲热海水热区为例[J]. 地球科学: 中国地质大学学报, 2016, 41(9): 1499-1510. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201609006.htm
    [14]
    郭清海, 刘明亮, 李洁祥, 等. 腾冲热海地热田高温热泉中的硫代砷化物及其地球化学成因[J]. 地球科学, 2017, 42(2): 286-297. doi: 10.3969/j.issn.1672-6561.2017.02.013
    [15]
    Planer-Friedrich B, Schaller J, Wismeth F, et al. Monothioarsenate occurrence in Bangladesh groundwater and its removal by ferrous and zero-valent iron technologies[J]. Environmental Science & Technology, 2018, 52(10): 5931-5939.
    [16]
    Kerl C F, Rafferty C, Clemens S, et al. Monothioarsenate uptake, transformation, and translocation in rice plants[J]. Environmental Science & Technology, 2018, 52(16): 9154-9161. http://www.ncbi.nlm.nih.gov/pubmed/30024151
    [17]
    Stauder S, Raue B, Sacher F. Thioarsenates in sulfidic waters[J]. Environmental Science & Technology, 2005, 39(16): 5933-5593. doi: 10.1021/es048034k
    [18]
    Keimowitz A R, Mailloux B J, Cole P, et al. Laboratory investigations of enhanced sulfate reduction as a groundwater arsenic remediation strategy[J]. Environmental Science & Technology, 2007, 41(19): 6718-6724. http://pubmedcentralcanada.ca/pmcc/articles/PMC3155844/
    [19]
    Suess E, Mehlhorn J, Planer-Friedrich B. Anoxic, ethanolic, and cool: An improved method for thioarsenate preservation in iron-rich waters[J]. Applied Geochemistry, 2015, 62: 224-233. doi: 10.1016/j.apgeochem.2014.11.017
    [20]
    王敏黛, 郭清海, 郭伟, 等. 硫代砷化物的合成、鉴定和定量分析方法研究[J]. 分析化学, 2016, 44(11): 1715-1720. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201611013.htm
    [21]
    童佳荣, 单慧媚, 刘崇炫, 等. 硫代砷形态测试分析技术及环境行为特征[J]. 环境科学与技术, 2018, 41(3): 156-162. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201803024.htm
    [22]
    Wallschlager D, Stadey C J. Determination of (Oxy)thioarsenates in sulfidic waters[J]. Analytical Chemistry, 2007, 79(10): 3873-80. doi: 10.1021/ac070061g
    [23]
    Ullrich M K, Misiari V, Planer-Friedrich B. A new method for thioarsenate preservation in iron-rich waters by solid phase extraction[J]. Water Research, 2016, 102: 542-550. doi: 10.1016/j.watres.2016.07.008
    [24]
    邬建勋, 余倩, 蒋庆肯, 等. 江汉平原高砷地下水与含水层沉积物的地球化学特征[J]. 地质科技情报, 2019, 38(1): 250-257. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901028.htm
    [25]
    严怡君, 谢先军, 郑文君, 等. 灌溉活动对大同盆地表层土壤中砷迁移的影响[J]. 地质科技情报, 2017, 36(3): 235-241. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201703033.htm
    [26]
    Xie X J, Johnson T M, Wang Y X, et al. Mobilization of arsenic in aquifers from the Datong Basin, China: Evidence from geochemical and iron isotopic data[J]. Chemosphere, 2013, 90(6): 1878-1884. doi: 10.1016/j.chemosphere.2012.10.012
    [27]
    Besold J, Biswas A, Suess E, et al. Monothioarsenate transformation kinetics determining arsenic sequestration by Sulfhydryl Groups of Peat[J]. Environmental Science & Technology, 2018, 52(13): 7317-7326. doi: 10.1021/acs.est.8b01542
    [28]
    Wood S A, Tait C D, Janecky D R. A Raman spectroscopic study of arsenite and thioarsenite species in aqueous solution at 25 ℃[J]. Geochemical Transactions, 2002, 3(4): 31-39. http://europepmc.org/articles/PMC1475613
    [29]
    Wilkin R T, Wallschläger D, Ford R G. Speciation of arsenic in sulfidic waters[J]. Geochemical Transactions, 2003, 4(1): 1-7. doi: 10.1186/1467-4866-4-1
    [30]
    Wilkin R T, Ford R G, Costantino L M, et al. Thioarsenite detection and implications for arsenic transport in groundwater[J]. Environmental Science & Technology, 2019, 53(20): 11684-11693. doi: 10.1021/acs.est.9b04478
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(705) PDF Downloads(972) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return