Citation: | Zhao Xin, Sun Shutang, Xie Xianjun. Synthesis of thioarsenate compounds and their occurrence characteristics in groundwater: A case study of Datong Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(2): 131-137. doi: 10.19509/j.cnki.dzkq.2021.0141 |
[1] |
Nickson R, Mcarthur J, Burgess W, et al. Arsenic poisoning of Bangladesh groundwater[J]. Nature, 1998, 395: 338-347. doi: 10.1038/26387
|
[2] |
Nordstrom D K. Worldwide occurrences of arsenic in ground water[J]. Science, 2002, 296: 2143-2145. doi: 10.1126/science.1072375
|
[3] |
Wang Y X, Pi K F, Fendorf S, et al. Sedimentogenesis and hydrobiogeochemistry of high arsenic Late Pleistocene-Holocene aquifer systems[J]. Earth-Science Reviews, 2019, 189: 79-98. doi: 10.1016/j.earscirev.2017.10.007
|
[4] |
Xie X J, Wang Y X, Ellis A, et al. The sources of geogenic arsenic in aquifers at Datong Basin, northern China: Constraints from isotopic and geochemical data[J]. Journal of Geochemical Exploration, 2011, 110(2): 155-166. doi: 10.1016/j.gexplo.2011.05.006
|
[5] |
Xie X J, Wang Y X, Su C L. Hydrochemical and sediment biomarker evidence of the impact of organic matter biodegradation on arsenic mobilization in shallow aquifers of Datong Basin, China[J]. Water Air and Soil Pollution, 2012, 223(2): 483-498. doi: 10.1007/s11270-011-0875-9
|
[6] |
何俊蓉, 谢先军, 池泽涌, 等. 古气候变化对大同盆地第四纪沉积物中砷富集过程的影响[J]. 地质科技情报, 2019, 38(5): 212-221. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905023.htm
|
[7] |
袁晓芳, 邓娅敏, 杜尧, 等. 江汉平原高砷地下水稳定碳同位素特征及其指示意义[J]. 地质科技通报, 2020, 39(5): 156-163. http://dzkjqb.cug.edu.cn/CN/abstract/abstract10061.shtml
|
[8] |
张丽萍, 谢先军, 李俊霞, 等. 大同盆地地下水中砷的形态、分布及其富集过程研究[J]. 地质科技情报, 2014, 33(1): 178-189. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201401028.htm
|
[9] |
Pi K F, Wang Y X, Xie X J, et al. Role of sulfur redox cycling on arsenic mobilization in aquifers of Datong Basin, northern China[J]. Applied Geochemistry, 2017, 77: 31-43. doi: 10.1016/j.apgeochem.2016.05.019
|
[10] |
Pi K F, Wang Y X, Xie X J, et al. Remediation of arsenic-contaminated groundwater by in-situ stimulating biogenic precipitation of iron sulfides[J]. Water Research, 2017, 109: 337-346. doi: 10.1016/j.watres.2016.10.056
|
[11] |
Herath I, Vithanage M, Seneweera S, et al. Thiolated arsenic in natural systems: What is current, what is new and what needs to be known?[J]. Environment International, 2018, 115: 370-386. doi: 10.1016/j.envint.2018.03.027
|
[12] |
Planer-Friedrich B, London J, McCleskey R B, et al. Thioarsenates in geothermal waters of Yellowstone National Park: Determination, preservation, and geochemical importance[J]. Environmental Science & Technology, 2007, 41(15): 5245-5251. http://www.tandfonline.com/servlet/linkout?suffix=CIT0036&dbid=8&doi=10.1080%2F01490451.2010.490078&key=17822086
|
[13] |
庄亚芹, 郭清海, 刘明亮, 等. 高温富硫化物热泉中硫代砷化物存在形态的地球化学模拟: 以云南腾冲热海水热区为例[J]. 地球科学: 中国地质大学学报, 2016, 41(9): 1499-1510. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201609006.htm
|
[14] |
郭清海, 刘明亮, 李洁祥, 等. 腾冲热海地热田高温热泉中的硫代砷化物及其地球化学成因[J]. 地球科学, 2017, 42(2): 286-297. doi: 10.3969/j.issn.1672-6561.2017.02.013
|
[15] |
Planer-Friedrich B, Schaller J, Wismeth F, et al. Monothioarsenate occurrence in Bangladesh groundwater and its removal by ferrous and zero-valent iron technologies[J]. Environmental Science & Technology, 2018, 52(10): 5931-5939.
|
[16] |
Kerl C F, Rafferty C, Clemens S, et al. Monothioarsenate uptake, transformation, and translocation in rice plants[J]. Environmental Science & Technology, 2018, 52(16): 9154-9161. http://www.ncbi.nlm.nih.gov/pubmed/30024151
|
[17] |
Stauder S, Raue B, Sacher F. Thioarsenates in sulfidic waters[J]. Environmental Science & Technology, 2005, 39(16): 5933-5593. doi: 10.1021/es048034k
|
[18] |
Keimowitz A R, Mailloux B J, Cole P, et al. Laboratory investigations of enhanced sulfate reduction as a groundwater arsenic remediation strategy[J]. Environmental Science & Technology, 2007, 41(19): 6718-6724. http://pubmedcentralcanada.ca/pmcc/articles/PMC3155844/
|
[19] |
Suess E, Mehlhorn J, Planer-Friedrich B. Anoxic, ethanolic, and cool: An improved method for thioarsenate preservation in iron-rich waters[J]. Applied Geochemistry, 2015, 62: 224-233. doi: 10.1016/j.apgeochem.2014.11.017
|
[20] |
王敏黛, 郭清海, 郭伟, 等. 硫代砷化物的合成、鉴定和定量分析方法研究[J]. 分析化学, 2016, 44(11): 1715-1720. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201611013.htm
|
[21] |
童佳荣, 单慧媚, 刘崇炫, 等. 硫代砷形态测试分析技术及环境行为特征[J]. 环境科学与技术, 2018, 41(3): 156-162. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201803024.htm
|
[22] |
Wallschlager D, Stadey C J. Determination of (Oxy)thioarsenates in sulfidic waters[J]. Analytical Chemistry, 2007, 79(10): 3873-80. doi: 10.1021/ac070061g
|
[23] |
Ullrich M K, Misiari V, Planer-Friedrich B. A new method for thioarsenate preservation in iron-rich waters by solid phase extraction[J]. Water Research, 2016, 102: 542-550. doi: 10.1016/j.watres.2016.07.008
|
[24] |
邬建勋, 余倩, 蒋庆肯, 等. 江汉平原高砷地下水与含水层沉积物的地球化学特征[J]. 地质科技情报, 2019, 38(1): 250-257. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901028.htm
|
[25] |
严怡君, 谢先军, 郑文君, 等. 灌溉活动对大同盆地表层土壤中砷迁移的影响[J]. 地质科技情报, 2017, 36(3): 235-241. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201703033.htm
|
[26] |
Xie X J, Johnson T M, Wang Y X, et al. Mobilization of arsenic in aquifers from the Datong Basin, China: Evidence from geochemical and iron isotopic data[J]. Chemosphere, 2013, 90(6): 1878-1884. doi: 10.1016/j.chemosphere.2012.10.012
|
[27] |
Besold J, Biswas A, Suess E, et al. Monothioarsenate transformation kinetics determining arsenic sequestration by Sulfhydryl Groups of Peat[J]. Environmental Science & Technology, 2018, 52(13): 7317-7326. doi: 10.1021/acs.est.8b01542
|
[28] |
Wood S A, Tait C D, Janecky D R. A Raman spectroscopic study of arsenite and thioarsenite species in aqueous solution at 25 ℃[J]. Geochemical Transactions, 2002, 3(4): 31-39. http://europepmc.org/articles/PMC1475613
|
[29] |
Wilkin R T, Wallschläger D, Ford R G. Speciation of arsenic in sulfidic waters[J]. Geochemical Transactions, 2003, 4(1): 1-7. doi: 10.1186/1467-4866-4-1
|
[30] |
Wilkin R T, Ford R G, Costantino L M, et al. Thioarsenite detection and implications for arsenic transport in groundwater[J]. Environmental Science & Technology, 2019, 53(20): 11684-11693. doi: 10.1021/acs.est.9b04478
|