Volume 40 Issue 2
Mar.  2021
Turn off MathJax
Article Contents
Luan Yan, Sun Xiaohui, Liu Minwu, He Ke. Analysis method for in-situ trace element determination of magnetite by LA-ICP-MS[J]. Bulletin of Geological Science and Technology, 2021, 40(2): 167-175. doi: 10.19509/j.cnki.dzkq.2021.0215
Citation: Luan Yan, Sun Xiaohui, Liu Minwu, He Ke. Analysis method for in-situ trace element determination of magnetite by LA-ICP-MS[J]. Bulletin of Geological Science and Technology, 2021, 40(2): 167-175. doi: 10.19509/j.cnki.dzkq.2021.0215

Analysis method for in-situ trace element determination of magnetite by LA-ICP-MS

doi: 10.19509/j.cnki.dzkq.2021.0215
  • Received Date: 10 Mar 2020
  • Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) method is characterized by in-situ, high space resolution and high sensitivity. Therefore, the study of LA-ICP-MS in-situ trace elements analysis in magnetite has made a rapid progress and it is widely used in geological field in recent years. An analytical method for the trace elements determination of magnetite by LA-ICP-MS using Agilent 7700X inductively coupled plasma-mass spectrometry (ICP-MS) and Photo Machines Analyte Excite 193nm laser ablation was established at the laboratory of mineralization and dynamics, Chang′an University. This method adopts multiple external standards (BIR-1G, BHVO-2G, BCR-2G and GSE-1G) as calibration standards without an internal standard. Trace element compositions of the glass standard material NIST 612 and natural magmatic magnetite BC 28 were determined by the established method to evaluate its reliability. The results show that the relative standard deviation (RSD, N=30) of trace elements in NIST 612 ranges from 1.31% to 6.33%. Compared with the recommended values and the previous reference values obtained by LA-ICP-MS, the relative error of most elements in NIST 612 is smaller than 10%. The RSD (N=30) of most elements in BC 28 is lower than 10%, and the relative error of 11 important trace elements in BC 28 is smaller than 10% compared with the reported values by LA-ICP-MS. The above results show that in-situ trace element determination of magnetite can be carried out by using the method established in this study. The analysis data is accurate and reliable, and it has a great application potential.

     

  • loading
  • [1]
    陈华勇, 韩金生. 磁铁矿单矿物研究现状, 存在问题和研究方向[J]. 矿物岩石地球化学通报, 2015, 34(4): 724-730. doi: 10.3969/j.issn.1007-2802.2015.04.006
    [2]
    方维萱, 李建旭. 智利铁氧化物铜金型矿床成矿规律、控制因素与成矿演化[J]. 地球科学进展, 2014, 29(9): 1011-1024. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201409005.htm
    [3]
    黄柯, 朱明田, 张连昌, 等. 磁铁矿LA-ICP-MS分析在矿床成因研究中的应用[J]. 地球科学进展, 2017, 32(3): 262-275. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201703004.htm
    [4]
    熊欣, 徐文艺, 贾丽琼, 等. 斑岩铜矿成矿构造背景研究进展[J]. 地球科学进展, 2014, 29(2): 250-264. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201402006.htm
    [5]
    侯可军, 李延河, 田有荣. LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J]. 矿床地质, 2009, 28(4): 481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010
    [6]
    李艳广, 汪双双, 刘民武, 等. 斜锆石LA-ICP-MS U-Pb定年方法及应用[J]. 地质学报, 2015, 89(12): 200-218. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201512015.htm
    [7]
    柳小明, 高山, 第五春容, 等. 单颗粒锆石的20 μm小斑束原位微区LA-ICP-MS U-Pb年龄和微量元素的同时测定[J]. 科学通报, 2007, 52(2): 228-235. doi: 10.3321/j.issn:0023-074X.2007.02.017
    [8]
    栾燕, 何克, 谭细娟. LA-ICP-MS标准锆石原位微区U-Pb定年及微量元素的分析测定[J]. 地质通报, 2019, 38(7): 1206-1218. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201907014.htm
    [9]
    谢烈文, 张艳斌, 张辉煌, 等. 锆石/斜锆石U-Pb和Lu-Hf同位素以及微量元素成分的同时原位测定[J]. 科学通报, 2008, 53(2): 220-228. doi: 10.3321/j.issn:0023-074X.2008.02.013
    [10]
    Yuan Honglin, Gao Shan, Liu Xiaoming, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28(3): 353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x
    [11]
    袁继海, 孙冬阳, 赵令浩, 等. 榍石LA-ICP-MS U-Pb定年技术研究[J]. 地质学报, 2016, 90(8): 2059-2069. doi: 10.3969/j.issn.0001-5717.2016.08.032
    [12]
    翟文建, 赵焕, 崔霄峰, 等. 北秦岭孤山坪地区辉长岩地球化学特征、锆石U-Pb年龄及Lu-Hf同位素组成[J]. 地质科技通报, 2020, 39(5): 127-138. http://dzkjqb.cug.edu.cn/CN/abstract/abstract10058.shtml
    [13]
    梁文博, 郭瑞清, 刘桂萍, 等. 新疆库鲁克塔格西段橄榄辉长岩脉石LA-ICP-MS锆石U-Pb年龄、地球化学特征及其构造意义[J]. 地质科技情报, 2019, 38(1): 58-67. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901007.htm
    [14]
    赵珂, 杜学斌, 贾冀新, 等. 西湖凹陷平湖斜坡带的物源分析: 来自碎屑锆石U-Pb年代学及重矿物的证据[J]. 地质科技通报, 2020, 39(3): 68-76. http://dzkjqb.cug.edu.cn/CN/abstract/abstract10024.shtml
    [15]
    陈春飞, 刘先国, 胡兆初. LA-ICP-MS微区原位准确分析含水硅酸盐矿物主量和微量元素[J]. 地球科学: 中国地质大学学报, 2014, 39(5): 525-536. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201405003.htm
    [16]
    Cook N, Ciobanu C L, George L, et al. Trace element analysis of minerals in magmatic-hydrothermal ores by laser ablation inductively-coupled plasma mass spectrometry: Approaches and opportunities[J]. Minerals, 2016, 6(4): 1-34. http://www.researchgate.net/publication/309322868_Trace_Element_Analysis_of_Minerals_in_Magmatic-Hydrothermal_Ores_by_Laser_Ablation_Inductively-Coupled_Plasma_Mass_Spectrometry_Approaches_and_Opportunities
    [17]
    Danyushevsky L, Robinson P, Gilbert S, et al. Routine quantitative multi-element analysis of sulphide minerals by laser ablation ICP-MS: Standard development and consideration of matrix effects[J]. Geochemistry: Exploration, Environment, Analysis, 2011, 11: 51-60. doi: 10.1144/1467-7873/09-244
    [18]
    Ding Lihua, Yang Guang, Xia Fang, et al. A LA-ICP-MS sulphide calibration standard based on a chalcogenide glass[J]. Mineralogical Magazine, 2011, 75(2): 279-287. doi: 10.1180/minmag.2011.075.2.279
    [19]
    Guther D, Hattendorf B. Solid sample analysis using laser ablation inductively coupled plasma mass apectrometry[J]. Trends in Analytical Chemistry, 2005, 24(3): 255-263. doi: 10.1016/j.trac.2004.11.017
    [20]
    柳小明, 高山, 袁洪林, 等. 193 nm LA-ICP-MS对国际地质标准参考物质中42种主量和微量元素的分析[J]. 岩石学报, 2002, 18(3): 408-418. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200203016.htm
    [21]
    孟郁苗, 黄小文, 高剑峰, 等. 无内标-多外标校正激光剥蚀等离子体质谱法测定磁铁矿微量元素组成[J]. 岩矿测试, 2016, 35(6): 585-594. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201606005.htm
    [22]
    Muller A, Wiedenbeck M, van den Kerkhof A M, et al. Trace elements in quartz: A combined electron microprobe, secondary ion mass spectrometry, laser-ablation ICP-MS, and cathodoluminescence study[J]. European Journal of Mineralogy, 2003, 15(4): 747-763. doi: 10.1127/0935-1221/2003/0015-0747
    [23]
    Norman M, Rominson P, Clark D. Major-and trace element analysis of sulfide ores by laser-ablation ICPMS, solution ICP-MS, and XRF: New data on international reference materials[J]. The Canadian Mineralogist, 2003, 41(2): 293-305. doi: 10.2113/gscanmin.41.2.293
    [24]
    吴石头, 王亚平, 许春雪. 激光剥蚀电感耦合等离子体质谱元素微区分析标准物质研究进展[J]. 岩矿测试, 2015, 34(5): 503-511. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201505002.htm
    [25]
    张德贤, 戴塔根, 胡毅. 磁铁矿中微量元素的激光剥蚀-电感耦合等离子体质谱分析方法探讨[J]. 岩矿测试, 2012, 31(1): 120-126. doi: 10.3969/j.issn.0254-5357.2012.01.015
    [26]
    Allan M M, Yardley B W D, Forbes L J, et al. Validation of LA-ICP-MS fluid inclusion analysis with synthetic fluid inclusions[J]. The American Mineralogist, 2005, 90(11/12): 1767-1775.
    [27]
    Guzmics T, Zajacz Z, Kodolanyi J, et al. LA-ICP-MS study of apatite- and K feldspar-hosted primary carbonatite melt inclusions in clinopyroxenite xenoliths from Lamprophyres, Hungary: Implications for significance of carbonatite melts in the Earth's mantle[J]. Geochimica et Cosmochimica Acta, 2008, 72: 1864-1886. doi: 10.1016/j.gca.2008.01.024
    [28]
    蓝廷广, 胡瑞忠, 范宏瑞, 等. 流体包裹体及石英LA-ICP-MS分析方法的建立及其在矿床学中的应用[J]. 岩石学报, 2017, 33(10): 3239-3262. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201710017.htm
    [29]
    李晓春, 范宏瑞, 胡芳芳, 等. 单个流体包裹体LA-ICP-MS成分分析及在矿床学中的应用[J]. 矿床地质, 2010, 29(6): 1017-1028. doi: 10.3969/j.issn.0258-7106.2010.06.006
    [30]
    Dare S A S, Barnes S J, Beaudoin G. Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid, Sudbury, Canada: Implications for provenance discrimination[J]. Geochimica et Cosmochimica Acta, 2012, 88: 27-50. doi: 10.1016/j.gca.2012.04.032
    [31]
    Gao Jianfeng, Zhou Meifu, Lightfoot P C, et al. Sulfide saturation and magma emplacement in the formation of the Permian Huangshandong Ni-Cu sulfide deposit, Xinjiang, Northwestern China[J]. Economic Geology, 2013, 108: 1833-1848. doi: 10.2113/econgeo.108.8.1833
    [32]
    Nadoll P, Angerer T, Mauk J L, et al. The chemistry of hydrothermal magnetite: A review[J]. Ore Geology Reviews, 2014, 61: 1-32. doi: 10.1016/j.oregeorev.2013.12.013
    [33]
    Liu Pingping, Zhou Meifu, Chen Wei, et al. In-situ LA-ICP-MS trace elemental analyses of magnetite: Fe-Ti-(Ⅴ) oxide-bearing mafic-ultramafic layered intrusions of the emeishan large igneous province, SW China[J]. Ore Geology Reviews, 2015, 65: 853-871. doi: 10.1016/j.oregeorev.2014.09.002
    [34]
    Huang Xiaowen, Zhou Meifu, Qi Liang, et al. Re-Os isotopic ages of pyrite and chemical composition of magnetite from the Cihai magmatic-hydrothermal Fe deposit, NW China[J]. Mineralium Deposita, 2013, 48(8): 925-946. doi: 10.1007/s00126-013-0467-2
    [35]
    Huang Xiaowen, Gao Jianfeng, Qi Liang, et al. In-situ LA-ICP-MS trace elemental analyses of magnetite and Re-Os dating of pyrite: The Tianhu hydrothermally remobilized sedimentary Fe deposit, NW China[J]. Ore Geology Reviews, 2015, 65: 900-916. doi: 10.1016/j.oregeorev.2014.07.020
    [36]
    Huang Xiaowen, Zhou Meifu, Qiu Yuzhuo, et al. In-situ LA-ICPMS trace elemental analyses of magnetite: The Bayan Obo Fe-REE-Nb deposit, North China[J]. Ore Geology Reviews, 2015, 65: 884-899. doi: 10.1016/j.oregeorev.2014.09.010
    [37]
    Chen Wei, Zhou Meifu, Gao Jianfeng, et al. Geochemistry of magnetite from Proterozoic Fe-Cu deposits in the Kangdian metallogenic province, SW China[J]. Mineralium Deposita, 2015, 50(7): 795-809. doi: 10.1007/s00126-014-0575-7
    [38]
    Nadoll P, Mauk J L, Leveille R A, et al. Geochemistry of magnetite from porphyry Cu and skarn deposits in the Southwestern United States[J]. Mineralium Deposita, 2015, 50(4): 493-515. doi: 10.1007/s00126-014-0539-y
    [39]
    Dupuis C, Beaudoin G. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types[J]. Mineralium Deposita, 2011, 46(3): 1-17. doi: 10.1007/s00126-011-0334-y
    [40]
    Dare S A S, Barnes S J, Beaudoin G, et al. Trace elements in magnetite as petrogenetic indicators[J]. Mineralium Deposita, 2014, 49: 785-796. doi: 10.1007/s00126-014-0529-0
    [41]
    Huang Xiaowen, Qi Liang, Meng Yumiao. Trace element geochemistry of magnetite from the Fe (-Cu) deposits in the Hami region, Eastern Tianshan Orogenic Belt, NW China[J]. Acta Geologica Sinica: English Edition, 2014, 88(1): 176-195. doi: 10.1111/1755-6724.12190
    [42]
    胡浩, 段壮, Luo Yan, 等. 鄂东程潮铁矿床磁铁矿的微量元素组成及其矿床成因意义[J]. 岩石学报, 2014, 30(5): 1292-1306. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201405008.htm
    [43]
    Boutroy E, Dare S A S, Beaudoin G, et al. Magnetite composition in Ni-Cu-PGE deposits worldwide and its application to mineral exploration[J]. Journal of Geochemical Exploration, 2014, 145: 64-81. doi: 10.1016/j.gexplo.2014.05.010
    [44]
    Makvandi S, Ghasemzadeh-Barvarz M, Beaudoin G, et al. Partial least squares-discriminant analysis of rrace element compositions of magnetite from various VMS deposit subtypes: Application to mineral exploration[J]. Ore Geology Reviews, 2016, 78: 388-408. doi: 10.1016/j.oregeorev.2016.04.014
    [45]
    Makvandi S, Ghasemzadeh-Barvarz M, Beaudoin G, et al. Principal component analysis of magnetite composition from volcanogenic massive sulfide deposits: Case studies from the Izok Lake (Nunavut, Canada) and Halfmile Lake (New Brunswick, Canada) deposits[J]. Ore Geology Reviews, 2016, 72: 60-85. doi: 10.1016/j.oregeorev.2015.06.023
    [46]
    Liu Yongsheng, Hu Zhaochu, Gao Shan, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43. http://www.sciencedirect.com/science/article/pii/S0009254108003501
    [47]
    刘勇胜, 胡兆初, 李明, 等. LA-ICP-MS在地质样品元素分析中的应用[J]. 科学通报, 2013, 58(36): 3753-3769. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201336003.htm
    [48]
    Pearce N J, Perkins W T, Westgate J A, et al. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials[J]. Geostandards and Geoanalytical Research, 1997, 21(1): 115-144. doi: 10.1111/j.1751-908X.1997.tb00538.x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(814) PDF Downloads(875) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return