Volume 40 Issue 3
May  2021
Turn off MathJax
Article Contents
Zhou Wenyu, Wang Xiaoming, Zeng Fangui, Dang Zheng, Zhu Chong, Chen Wenwen, Wang Zhizhuang, Tu Mingkai. Water mobility of the main coal seam and its control of porosity and permeability in Jixi Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 124-131. doi: 10.19509/j.cnki.dzkq.2021.0305
Citation: Zhou Wenyu, Wang Xiaoming, Zeng Fangui, Dang Zheng, Zhu Chong, Chen Wenwen, Wang Zhizhuang, Tu Mingkai. Water mobility of the main coal seam and its control of porosity and permeability in Jixi Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 124-131. doi: 10.19509/j.cnki.dzkq.2021.0305

Water mobility of the main coal seam and its control of porosity and permeability in Jixi Basin

doi: 10.19509/j.cnki.dzkq.2021.0305
  • Received Date: 06 Jul 2020
  • Water mobility is an important factor affecting the production of coalbed methane. It is of great significance to analyze the effect of porosity and permeability on water mobility for the development of coalbed methane in Jixi Basin. In order to analyze the influence of porosity and permeability of coal reservoir on the water mobility, we performed low field NMR, permeability and water saturation experiments on the main coal seams of different mining areas in Jixi Basin.The results show that: ①Adsorption pores are relatively developed and the average proportion is 58.36%, while the seepage pores and fractures are similarly developed, with the average proportion of 21.23% and 20.41%, respectively.The seepage pores and fracture are well connected; ②The centrifugal force that makes the studied coal seam reach the bound water state is 1.38 MPa, under which the movable water can be discharged from half-open or open pores with a radius of more than 0.1 μm.By which the movable water saturation is 27.84%-60.87%, with an average of 37.86%; the irreducible water saturation is higher which is calculated as 39.13%-72.16%(av.62.14%).With the increase of pressure, the movable water flows first along the fracture, and then flows out through the seepage pores, while the irreducible water mainly existing in the adsorption pores is difficult to flow because of the large capillary resistance during centrifugation; ③There are obvious differences in water mobility and occurrence in coal samples with similar metamorphic degree, which may be one of the reasons for the difference of water and gas production in different block's CBM wells; ④The movable water in the study area is easy to flow out from coals with higher movable water saturation, greater permeability and more developed pore throat of more than 1 000 nm, but the water is difficult to flow out from coals with lower movable water saturation and more developed pore throat of 0-100 nm in which water is trapped.

     

  • loading
  • [1]
    Cao L T, Yao Y B, Cui C, et al. Characteristics of in-situ stress and its controls on coalbed methane development in the southeastern Qinshui Basin, North China[J]. Energy Geoscience, 2020, 1(2): 69-80.
    [2]
    Zhang J Y, Feng Q H, Zhang X M, et al. Multi-fractured horizontal well for improved coalbed methane production in eastern Ordos basin, China: Field observations and numerical simulations[J]. Journal of Petroleum Science and Engineering, 2020, 194: 1-17.
    [3]
    Lu Y, Li H, Lu J X, et al. Clean up water blocking damage in coalbed methane reservoirs by microwave heating: Laboratory studies[J]. Process Safety and Environmental Protection, 2020, 138: 292-299. doi: 10.1016/j.psep.2020.04.007
    [4]
    原俊红, 付玉通, 蔡念. 延川南水文地质控气作用研究[J]. 地质科技情报, 2018, 37(6): 239-244. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201806030.htm

    Yuan J H, Fu Y T, Cai N. Function of hydrogeology on coalbed methane in Yanchuannan[J]. Geological Science and Technology Information, 2018, 37(6): 239-244(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201806030.htm
    [5]
    甘华军, 王华, 严德天. 高、低煤阶煤层气富集主控因素的差异性分析[J]. 地质科技情报, 2010, 29(1): 56-60. doi: 10.3969/j.issn.1000-7849.2010.01.009

    Gan H J, Wang H, Yan D T. Differential impact on high and low rank coal by the main factors of coalbed gas enrichment[J]. Geological Science and Technology Information, 2010, 29(1): 56-60(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2010.01.009
    [6]
    刘小磊. 基于核磁共振的煤层气产出过程气水动态变化规律模拟[D]. 北京: 中国矿业大学, 2016.

    Liu X L. Simulation of methane change law based on and water dynamic NMR during CBM output process[D]. Beijing: China University of Mining and Technology, 2016(in Chinese with English abstract).
    [7]
    赵贤正, 桑树勋, 张建国, 等. 沁南煤层气开发区块煤储层特征分析及意义[J]. 中国煤层气, 2011, 8(2): 3-7. doi: 10.3969/j.issn.1672-3074.2011.02.001

    Zhao X Z, San S X, Zhang J G, et al. Analysis of characteristics of coal reservoir in CBM development block in South Qinshui and its significance[J]. China Coalbed Methane, 2011, 8(2): 3-7(in Chinese with English abstract). doi: 10.3969/j.issn.1672-3074.2011.02.001
    [8]
    王为民, 郭和坤, 叶朝辉, 等. 利用核磁共振可动流体评价低渗透油田开发潜力[J]. 石油学报, 2001, 22(6): 40-44. doi: 10.3321/j.issn:0253-2697.2001.06.009

    Wang W M, Guo H K, Ye C H, et al. The evaluation of development potential in low permeability oilfield by the aid of NMR Movable fluid detecting technology[J]. Acta Petrolei Sinica, 2001, 22(6): 40-44. doi: 10.3321/j.issn:0253-2697.2001.06.009
    [9]
    吕玉民, 胡爱梅, 汤达祯, 等. 煤中水可动性的核磁共振响应及其影响因素[J]. 高校地质学报, 2012, 18(3): 549-552. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201203025.htm

    Lü Y M, Hu A M, Tang D Z, et al. Nuclear magnetic resonance (NMR) response of mobile water in coals and influencing factors[J]. Geological Journal of China Universities, 2012, 18(3): 549-552(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201203025.htm
    [10]
    赵贤正, 杨延辉, 陈龙伟, 等. 高阶煤储层固-流祸合控产机理与产量模式[J]. 石油学报, 2015, 36(9): 1029-1034. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201509001.htm

    Zhao X Z, Yang Y H, Chen L W, et al. Production controlling mechanism and mode of solid-fluid coupling of high rank coal reservoirs[J]. Acta Petrolei Sinica, 2015, 36(9): 1029-1034(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201509001.htm
    [11]
    郑可, 徐怀民, 陈建文, 等. 低渗储层可动流体核磁共振研究[J]. 现代地质, 2013, 27(3): 710-718. doi: 10.3969/j.issn.1000-8527.2013.03.024

    Zheng K, Xu H M, Chen J W, et al. Movable fluid study of low permeability reservoir with nuclear magnetic resonance technology[J]. Geoscience, 2013, 27(3): 710-718(in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2013.03.024
    [12]
    Shen J, Zhao J C, Qin Y, et al. Water imbibition and drainage of high rank coals in Qinshui Basin, China[J], Fuel, 2018, 211(1): 48-59.
    [13]
    欧阳思琪, 孙卫, 吴育平, 等. 低渗-特低渗油藏渗流特征及影响因素: 以鄂尔多斯盆地安塞油田侯市-杏河地区长6油藏为例[J]. 地质科技情报, 2019, 38(2): 199-207. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902023.htm

    Ouyang S Q, Sun W, Wu Y P, et al. Seepage characteristics and influencing factors of low permeability ultra low permeability reservoir: A case of Chang 6 reservoir in Houshi-Xinghe area of ansai Oilfield in Ordos Basin[J]. Geological Science and Technology Information, 2019, 38(2): 199-207(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902023.htm
    [14]
    谢升洪, 李伟, 冷福, 等. 致密砂岩储层可动流体赋存规律及制约因素研究: 以鄂尔多斯盆地华庆油田长6段储层为例[J]. 地质科技情报, 2019, 38(5): 105-114. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905011.htm

    Xie S H, Li W, Leng F, et al. Distribution and controlling factors of movable fluid in tight sandstone reservoir: Taking Chang 6 Formation of Huaqing Oilfield in ordos basin as an example[J]. Geological Science and Technology Information, 2019, 38(5): 105-114(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905011.htm
    [15]
    Kenyon W E. Nuclear magnetic resonance as a petrophysical measurement[J]. Nuclear Geophysics, 1992, 6(2): 153-171.
    [16]
    姚艳斌, 刘大锰. 煤储层精细定量表征与综合评价模型[M]. 北京: 地质出版社, 2013.

    Yao Y B, Liu D M. Fine quantitative characterization and comprehensive evaluation model of coal reservoir[M]. Beijing: Geological Publishing House, 2013(in Chinese with English abstract).
    [17]
    Zheng S J, Yao Y B, Cai Y D, et al. Characteristics of movable fluid and pore size distribution of low rank coals reservoir in southern margin of Junggar basin[J]. Coal Geology & Exploration, 2018, 46(1): 56-60. http://www.zhangqiaokeyan.com/academic-journal-cn_coal-geology-exploration_thesis/0201215629262.html
    [18]
    李海波. 岩心核磁共振可动流体T2截止值试验研究[D]. 廊坊: 中国科学院渗流流体力学研究所, 2008.

    Li H B. Core experimental study of NMR T2 cutoff value[D]. Langfang: China National Petroleum Corporation & Chinese Academy of Science, 2018(in Chinese with English abstract).
    [19]
    周尚文, 刘洪林, 闰刚, 等. 中国南方海相页岩储层可动流体及T2截止值核磁共振研究[J]. 石油与天然气地质, 2016, 37(4): 612-616. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201604022.htm

    Zhou S W, Liu H L, Run G, et al. NMR research of movable fluid and T2 cutoff of marine shale in South China[J]. Oil & Gas Geology, 2016, 37(4): 612-616(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201604022.htm
    [20]
    龚国波, 孙伯勤, 刘买利, 等. 岩心孔隙介质中流体的核磁共振弛豫[J]. 波普学杂志, 2006, 23(3): 379-395. https://www.cnki.com.cn/Article/CJFDTOTAL-PPXZ200603014.htm

    Gong G B, Sun B Q, Liu M L, et al. NMR relaxation of the fluid in rock porous media[J]. Chinese Journal of Magnetic Resonance, 2006, 23(3): 379-395(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-PPXZ200603014.htm
    [21]
    Yao Y B, Liu D M, Che Y, et al. Petrophysical characterization of coals by low-field nuclear magnetic resonance (NMR)[J]. Fuel, 2010, 89(7): 1371-1380. doi: 10.1016/j.fuel.2009.11.005
    [22]
    石强, 潘一山. 基于非磁性渗透仪和核磁技术的煤体结构分析[J]. 采矿与安全工程学报, 2006, 3(23): 302-305. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL200603011.htm

    Shi Q, Pan Y S. Analysis of structure of coal based on Non-Magneticosmocope and nuclear magnetic imaging technology[J]. Journal of Ming & Safety Engineering, 2006(23): 302-305(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL200603011.htm
    [23]
    张亚蒲, 何应付, 杨正明, 等. 核磁共振技术在煤层气储层评价中的应用[J]. 石油天然气学报, 2010, 2(32): 277-279. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX201002071.htm

    Zhang Y P, He Y F, Yang Z M, et al. Application of nuclear magnetic resonance technology in evaluation of coalbed methane reservoir[J]. Journal of Oil and Gas Technology, 2010, 2(32): 277-279(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX201002071.htm
    [24]
    Yakov V. A practical approach to obtain primary drainage capillary pressure curves from NMR core and log data[J]. Petrophysics, 2001, 42(4): 334-343.
    [25]
    刘俊刚. 低场核磁共振技术在煤储层物性及流体作用规律分析中的应用[D]. 北京: 中国地质大学(北京), 2013.

    Liu J G. Application of low field nuclear magnetic resonance in characterizing the physical properties of coal reservoir and the occurrence and migration regularity of fluid in coal[D]. Beijing: China University of Geosciences(Beijing), 2013.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(421) PDF Downloads(594) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return