Volume 40 Issue 3
May  2021
Turn off MathJax
Article Contents
Zhao Shiyu, Li Yi, Ming Liang, Zhang Yong, Li Xufeng, Zheng Changyuan. Experimental study on the effect of temperature and pressure on CH4 breakthrough pressure in unsaturated low-permeability sandstone[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 132-139. doi: 10.19509/j.cnki.dzkq.2021.0306
Citation: Zhao Shiyu, Li Yi, Ming Liang, Zhang Yong, Li Xufeng, Zheng Changyuan. Experimental study on the effect of temperature and pressure on CH4 breakthrough pressure in unsaturated low-permeability sandstone[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 132-139. doi: 10.19509/j.cnki.dzkq.2021.0306

Experimental study on the effect of temperature and pressure on CH4 breakthrough pressure in unsaturated low-permeability sandstone

doi: 10.19509/j.cnki.dzkq.2021.0306
  • Received Date: 30 Jul 2020
  • Breakthrough pressure plays an important role in gas reservoir exploitation and caprock sealing evaluation.In order to simulate the effects of temperature and pressure on CH4 breakthrough pressure in low-permeability sandstones, a step-by-step method was used to conduct CH4 breakthrough experiments on an unsaturated low-permeability sandstone from the Ordos Basin under different combinations of temperature and pressure.The results show that with the increase of temperature or pressure, the breakthrough pressure and time of CH4 show a downward trend, and the pressure change has a more significant impact on the breakthrough process of CH4.It was found that the effect of temperature and pressure on the breakthrough pressure of CH4 is due to the change of interfacial tension and contact angle, and then controls the breakthrough pressure.In addition, it was found that the breakthrough pressure decreases with the increase of the two-phase viscosity ratio; the higher the temperature and pressure, the smaller the breakthrough pressure.Therefore, within this P-T range, for the unsaturated low-permeability sandstone reservoir, the higher the temperature and pressure, the more favorable for gas reservoir development; for the unsaturated low-permeability sandstone caprock, the lower the temperature and pressure, the better the sealing property of the cap rock and the safer the caprock.

     

  • loading
  • [1]
    郭少斌, 郑红梅, 黄家国. 鄂尔多斯盆地上古生界非常规天然气综合勘探前景[J]. 地质科技情报, 2014, 33(6): 69-77. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201406010.htm

    Guo S B, Zheng H M, Huang J G. Integrated exploration prospects of unconventional gas of Upper Paleozoic in Ordos Basin[J]. Geological Science and Technology Information, 2014, 33(6): 69-77(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201406010.htm
    [2]
    Chapiro G, Bruining J. Combustion enhance recovery of shale gas[J]. Journal of Petroleum Science and Engineering, 2015, 127: 179-189. doi: 10.1016/j.petrol.2015.01.036
    [3]
    杨涛, 曹涛涛, 刘虎, 等. 武威盆地上石炭统羊虎沟组页岩气成藏条件[J]. 地质科技情报, 2019, 38(3): 188-199. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903020.htm

    Yang T, Cao T T, Liu H, et al. Shale gas accumulation condition of the Upper Carboniferous Yanghugou Formation in Wuwei Basin[J]. Geological Science and Technology Information, 2019, 38(3): 188-199(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903020.htm
    [4]
    Cheng P, Yu Q. Experimental study on the relationship between the matric potential and methane breakthrough pressure of partially water-saturated shale fractures[J]. Journal of Hydrology, 2019, 578: 124044. doi: 10.1016/j.jhydrol.2019.124044
    [5]
    程鹏举, 于青春. 非饱和低渗砂岩突破压力试验研究: 以柴达木盆地东部石炭系砂岩为例[J]. 水文地质工程地质, 2017, 44(6): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201706013.htm

    Cheng P J, Yu Q C. An experimental study of the breakthrough pressure of unsaturated low-permeability sandstone: a case study of the Carboniferous sandstone in the eastern Qaidam Basin[J]. Hydrogeology & Engineering Geology, 2017, 44(6): 77-82(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201706013.htm
    [6]
    Zhang C, Yu Q. The effect of water saturation on CH4 breakthrough pressure: An experimental study on the Carboniferous shales from the eastern Qaidam Basin, China[J]. Journal of Hydrology, 2016, 534(11): 832-848. http://www.sciencedirect.com/science/article/pii/S0022169416307090
    [7]
    Li Y, Yu Q. The effects of brine species on the formation of Residual Water in a CO2-Brine system[J]. Transport in Porous Media, 2014, 104: 553-564. doi: 10.1007/s11242-014-0349-9
    [8]
    Zhao Y, Yu Q. CO2 breakthrough pressure and permeability for unsaturated low-permeability sandstone of the Ordos Basin[J]. Journal of Hydrology, 2017, 550: 331-342. doi: 10.1016/j.jhydrol.2017.04.050
    [9]
    谢升洪, 李伟, 冷福, 等. 致密砂岩油藏可动流体赋存规律及制约因素研究: 以鄂尔多斯盆地华庆油田长6段储层为例[J]. 地质科技情报, 2019, 38(5): 105-114. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905011.htm

    Xie S H, Li W, Leng F, et al. Distribution and controlling factors of movable fluid in tight sandstone reservoir: Taking Chang 6 Formation of Huaqing Oilfield in Ordos Basin as an example[J]. Geological Science and Technology Information, 2019, 38(5): 105-114(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201905011.htm
    [10]
    周林, 刘皓天, 周坤, 等. 致密砂岩储层"甜点"识别及评价方法[J]. 地质科技通报, 2020, 39(4): 165-173. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202004021.htm

    Zhou L, Liu H T, Zhou K, et al. "Sweet spot" identification and evaluation of tight sandstone reservoir[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 165-173(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202004021.htm
    [11]
    李欢, 王清斌, 庞小军, 等. 致密砂砾岩储层裂缝形成及储层评价: 以黄河口凹陷沙二段为例[J]. 地质科技情报, 2019, 38(1): 176-185. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901019.htm

    Li H, Wang Q B, Pang X J, et al. Fracture generation and reservoir evaluation of tight glutenite reservoir: A case study of second member of Shahejie Formation in Huanghekou Depression[J]. Geological Science and Technology Information, 2019, 38(1): 176-185(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901019.htm
    [12]
    冯小哲, 祝海华. 鄂尔多斯盆地苏里格地区下石盒子组致密砂岩储层微观孔隙结构及分形特征[J]. 地质科技情报, 2019, 38(3): 147-156. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903015.htm

    Feng X Z, Zhu H H. Micro-pore structure and fractal characteristics of the Xiashihezi Formation tight sandstone reservoirs in Sulige Area, Ordos Basin[J]. Geological Science and Technology Information, 2019, 38(3): 147-156(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903015.htm
    [13]
    Li Y, Li X, Yu Q. Effects of composition and pore structure on the reservoir gas capacity of Carboniferous shale from Qaidam Basin, China[J]. Marine and Petroleum Geology, 2015, 62(1): 44-57.
    [14]
    Zhao Y, Yu Q. Effect of CH4 on the CO2 breakthrough pressure and permeability of partially saturated low-permeability sandstone in the Ordos Basin, China[J]. Journal of Hydrology, 2018, 556: 732-748. doi: 10.1016/j.jhydrol.2017.11.030
    [15]
    Hildenbenbrand A, Bertier P, Busch A, et al. Experimental investigation of the sealing capacity of generic clay-rich caprocks[J]. International Journal of Greenhouse Gas Control, 2013, 19: 620-641. doi: 10.1016/j.ijggc.2013.01.040
    [16]
    Guiltinan E J, Espinoza D N, Cockrell L P, et al. Textural and compositional controls on mudrock breakthrough pressure and permeability[J]. Advances in Water Resources, 2018, 121: 162-172. doi: 10.1016/j.advwatres.2018.08.014
    [17]
    魏宁, 李小春, 王颖, 等. 不同温压条件下泥质粉砂岩二氧化碳突破压的试验研究[J]. 岩土力学, 2014, 35(1): 98-104. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401014.htm

    Wei N, Li X C, Wang Y, et al. Experimental studies of CO2 breakthrough pressure of argillaceous siltstone under different pressures and temperatures[J]. Rock and Soil Mechanics, 2014, 35(1): 98-104(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401014.htm
    [18]
    Rezaeyan A, Tabatabaei-Nejad S A, Khodapanah E, et al. Parametric analysis of caprock integrity in relation with CO2 geosequestration: Capillary breakthrough pressure of caprock and gas efective permeability[J]. Greenhouse Gases: Science and Technology, 2015, 5(6), 714-731. doi: 10.1002/ghg.1516
    [19]
    姚泾利, 王怀厂, 裴戈, 等. 鄂尔多斯盆地东部上古生界致密砂岩超低含水饱和度气藏形成机理[J]. 天然气工业, 2014, 34(1): 37-43. doi: 10.3787/j.issn.1000-0976.2014.01.005

    Yao J L, Wang H C, Pei G, et al. The Formation mechanism of Upper Paleozoic tight sand gas reservoirs with ultra-low water saturation in Eastern Ordos Basin[J]. Natural Gas Industry, 2014, 34(1): 37-43(in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2014.01.005
    [20]
    吴双, 汤达祯, 李松, 等. 温度/压力对甲烷超临界吸附能量参数的影响机制[J]. 煤炭科学技术, 2019, 47(9): 60-67. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201909004.htm

    Wu S, Tang D Z, Li S, et al. Effect of temperature and pressure on energy parameters of methane supercritical adsorption[J]. Coal Science and Technology, 2019, 47(9): 60-67(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201909004.htm
    [21]
    Boulin P F, Bretonnier P, Vassil V, et al. Sealing efficiency of caprocks: Experimental investigation of entry pressure measurement methods[J]. Marine and Petroleum Geology, 2013, 48(48): 20-30.
    [22]
    Li Y, Yu Q. Rock-core scale modeling of initial water saturation effects on CO2 breakthrough pressure in CO2 geo-sequestration[J]. Journal of Hydrology, 2020, 580: 124234. doi: 10.1016/j.jhydrol.2019.124234
    [23]
    国家能源局. SY/T 5748-2013岩石气体突破压力测定方法[S]. 北京: 石油工业出版社, 2014.

    National Energy Administration. SY/T 5748-2013 Determination method of gas breakthrough pressure in rock[S]. Beijing: Petroleum industry press, 2014(in Chinese with English abstract).
    [24]
    李铱. CO2地质储存中残余水形成过程研究[D]. 北京: 中国地质大学(北京), 2013.

    Li Y. Research on the formation of residual water in CO2 Geological storage[D]. Beijing: China University of Geosciences(Beijing), 2013(in Chinese with English abstract).
    [25]
    李铱, 李旭峰, 沈照理, 等. CO2地质封存室内实验中盐水种类对残余水形成的影响[J]. 地学前缘, 2015, 22(4): 312-319. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201504035.htm

    Li Y, Li X F, Shen Z L, et al. The effects of brine species on the formation of residual water in laboratory experiments of CO2 geological storage[J]. Earth Science Frontiers, 2015, 22(4): 312-319(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201504035.htm
    [26]
    Zhao Y, Xia L, Zhang Q, et al. The influence of water saturation on permeability of lowpermeability sandstone[J]. Earth and Planetary Science, 2017, 17: 861-864. doi: 10.1016/j.proeps.2017.01.042
    [27]
    Ren Q, Chen G, Yan W, et al. Interfacial tension of (CO2+CH4)+water from 298 K to 373 K and pressures up to 30 MPa[J]. Journal of Chemical and Engineering Data, 2000, 45: 610-612. doi: 10.1021/je990301s
    [28]
    李铱. CO2-盐水-岩石系统中残余水形成机制研究[D]. 北京: 中国地质大学(北京), 2016.

    Li Y. Study on the formation mechanisms of residual water in CO2-brine-rock systems[D]. Beijing: China University of Geosciences(Beijing), 2016(in Chinese with English abstract).
    [29]
    AZ-AI-Yaseri, Hamid R, Maxim L. et al. Dependence of quartz wettability on fluid density[J]. Geophysical Research Letters, 2016, 43(8): 3771-3776. doi: 10.1002/2016GL068278
    [30]
    Pan B, Li Y, Xie L, et al. Role of fluid density on quartz wettability[J]. Journal of Petroleum Science and Engineering, 2019, 172: 511-516. doi: 10.1016/j.petrol.2018.09.088
    [31]
    Garcia R, Osborne K, Subashi E. Validity of the "sharp-kink approximation" for water and other fluids[J]. Journal of Physical Chemistry, 2009, 113(23): 8199-8199. doi: 10.1021/jp903787d
    [32]
    Gatica S M, Johnson J K, Zhao X C. et al, Wetting transition of water on graphite and other surfaces[J]. Journal of Physical Chemistry B, 2004, 108(31): 11704-11708. doi: 10.1021/jp048509u
    [33]
    Randive P, Dalal A. Influence of viscosity ratio and wettability on droplet displacement behavior: A mesoscale analysis[J]. Computers Fluids, 2014, 102: 15-31. doi: 10.1016/j.compfluid.2014.06.021
    [34]
    王梦婷. 咸水层封存条件下CO2-盐水界面张力实验研究[D]. 大连: 大连理工大学, 2016.

    Wang M T. Experimental study on the interfacial tension of CO2-brine system under saline aquifer sequestration conditions[D]. Dalian: Dalian University of Technology, 2016(in Chinese with English abstract).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(564) PDF Downloads(585) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return