Volume 40 Issue 3
May  2021
Turn off MathJax
Article Contents
Cao Yangbing, Chen Yuhua, Zhang Peng, Huang Zhenping, Zhang Xiangxiang, Chen Yangtao. Failure characteristics and mechanism of biotite monzogranite with different water content under uniaxial compression[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 163-172. doi: 10.19509/j.cnki.dzkq.2021.0308
Citation: Cao Yangbing, Chen Yuhua, Zhang Peng, Huang Zhenping, Zhang Xiangxiang, Chen Yangtao. Failure characteristics and mechanism of biotite monzogranite with different water content under uniaxial compression[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 163-172. doi: 10.19509/j.cnki.dzkq.2021.0308

Failure characteristics and mechanism of biotite monzogranite with different water content under uniaxial compression

doi: 10.19509/j.cnki.dzkq.2021.0308
  • Received Date: 01 Aug 2020
  • The deformation and failure characteristics and mechanism of granite under different water content are of great significance to the stability evaluation of this kind of engineering rock mass. The uniaxial compression tests of biotite monzogranite under different water content were carried out to analyze the failure characteristics and stress-strain curve characteristics. The fracture scanning electron microscope test was carried out to analyze the micro morphology characteristics, and study the failure mechanism of granite. The test results show that: biotite monzogranite has obvious strain softening characteristics. With the increase of water content, the length of the microfracture compaction stage increases, while the length of the stable fracture stage and the unstable fracture stage gradually shortens, but the proportion increases, and the fluctuation alternation in the pre-peak stage of the curve intensifies. Compared with dry samples, the uniaxial compressive strength and elasticity modulus of saturated sample decreased by 40.68% and 20.3% respectively. The deformation and failure process can be roughly divided into five stages: quiescent stage, crack initiation stage, crack growth with particle ejection stage, flaky debris peeling with particle ejection stage and caving failure stage. With the increase of water content, the intensity, sound and brittleness of granite failure gradually decrease. In general, the failure mechanism of granite is tension-shear composite failure. When the granite with low water content, the dominant failure mechanism is tensile failure induced by compression; with the increase of water content, the tensile failure decreases and the shear failure increases; and while the granite is in saturation, the dominant failure mechanism is shear failure. The research results can provide theoretical support for the construction of coupling model between biotite monzogranite and water, and have important scientific significance for the stability analysis of engineering rock mass under water-rock coupling environment.

     

  • loading
  • [1]
    张春会, 赵全胜. 饱水度对砂岩模量及强度影响的三轴试验[J]. 岩土力学, 2014, 35(4): 951-958. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201404006.htm

    Zhang C H, Zhao Q S. Triaxial tests of effects of varied saturations on strength and modulus for sandstone[J]. Rock and Soil Mechanics, 2014, 35(4): 951-958(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201404006.htm
    [2]
    刘小明, 李焯芬. 岩石断口微观断裂机制分析与试验研究[J]. 岩石力学与工程学报, 1997, 16(6): 509-513. doi: 10.3321/j.issn:1000-6915.1997.06.001

    Liu X M, Li C F. Mircofailure mechanism analysis and test study for rock failure surface[J]. Chinese Journal of Rock Mechanics and Engineering, 1997, 16(6): 509-513(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.1997.06.001
    [3]
    陈友晴. Westerly花岗岩试样单轴压缩破坏瞬时微裂纹观察[J]. 岩石力学与工程学报, 2008, 27(12): 2440-2448. doi: 10.3321/j.issn:1000-6915.2008.12.008

    Chen Y Q. Observation of microcracks patterns in Westerly granite specimens stressed immediately before failure by uniaxial compressive loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(12): 2440-2448(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2008.12.008
    [4]
    张希巍, 王刚, 蔡明, 等. 凌海花岗岩变形特点与脆性评价[J]. 岩土力学, 2018, 39(10): 3518-3524. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201810002.htm

    Zhang X W, Wang G, Cai M, et al. Deformation behaviour and brittleness of Linghai granite[J]. Rock and Soil Mechanics, 2018, 39(10): 3518-3524(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201810002.htm
    [5]
    朱泽奇, 盛谦, 冷先伦, 等. 三峡花岗岩起裂机制研究[J]. 岩石力学与工程学报, 2007, 26(12): 2570-2575. doi: 10.3321/j.issn:1000-6915.2007.12.025

    Zhu Z Q, Sheng Q, Leng X L, et al. Study on crack initiation mechanism of three Gorges granite[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(12): 2570-2575(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2007.12.025
    [6]
    何满潮, 苗金丽, 李德建, 等. 深部花岗岩试样岩爆过程试验研究[J]. 岩石力学与工程学报, 2007, 26(5): 865-876. doi: 10.3321/j.issn:1000-6915.2007.05.001

    He M C, Miao J L, Li D J, et al. Experimental study on rockburst processes of granite specimen at great depth[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(5): 865-876(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2007.05.001
    [7]
    苗金丽, 何满潮, 李德建, 等. 花岗岩应变岩爆声发射特征及微观断裂机制[J]. 岩石力学与工程学报, 2009, 28(8): 1593-1603. doi: 10.3321/j.issn:1000-6915.2009.08.010

    Miao J L, He M C, Li D J, et al. Acoustic emission characteristics of granite under strain rockburst test and its micro-fracture mechanism[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(8): 1593-1603(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2009.08.010
    [8]
    吕颖慧, 刘泉声, 胡云华. 基于花岗岩卸荷试验的损伤变形特征及其强度准则[J]. 岩石力学与工程学报, 2009, 28(10): 2096-2103. doi: 10.3321/j.issn:1000-6915.2009.10.018

    Lu Y H, Liu Q S, Hu Y H. Damage deformation characteristics and its strength griterion based on unloading experiments of granites[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10): 2096-2103(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2009.10.018
    [9]
    王者超, 赵建纲, 李术才, 等. 反复加卸载作用下花岗岩疲劳力学性质及其本构模型[J]. 岩石力学与工程学报, 2012, 31(9): 1888-1900. doi: 10.3969/j.issn.1000-6915.2012.09.021

    Wang Z C, Zhao J G, Li S C, et al. Fatigue mechanical behavior of granite subjected to cyclic load and its constitutive model[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(9): 1888-1900(in Chinese with English abstract). doi: 10.3969/j.issn.1000-6915.2012.09.021
    [10]
    周辉, 孟凡震, 刘海涛. 花岗岩脆性破坏特征与机制试验研究[J]. 岩石力学与工程学报, 2014, 33(9): 1822-1827. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201409013.htm

    Zhou H, Meng F Z, Liu H T, et al. Expreimental study on characteristics and mechanism of brittle failure of granite[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(9): 1822-1827(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201409013.htm
    [11]
    Akesson U, Hansson J, Stijh J. Characterisation of microcracks in the Bohus granite, western Sweden, caused by uniaxial cyclic loading[J]. Engineering Geology, 2004, 72(1): 131-142. http://www.sciencedirect.com/science/article/pii/S0013795203001686
    [12]
    Lajtal E Z. Microscopic fracture processes in a granite[J]. Rock Mechanics and Rock Engineering, 1998, 31(4): 237-250. doi: 10.1007/s006030050023
    [13]
    倪骁慧, 朱珍德, 李晓娟, 等. 循环荷载下花岗岩细观损伤量化试验研究[J]. 岩土力学, 2011, 32(7): 1991-1995. doi: 10.3969/j.issn.1000-7598.2011.07.012

    Ni X H, Zhu Z D, Li X J, et al. Quantitative test study of meso-damage of rock under cyclic load[J]. Rock and Soil Mechanics, 2011, 32(7): 1991-1995(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2011.07.012
    [14]
    Heap M J, Faulkner D R. Quantifying the evolution of static elastic properties as crystalline rock approaches failure[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(3): 564-573. http://www.sciencedirect.com/science/article/pii/S1365160907001165
    [15]
    Lajtai E Z, Schmidtke R H, Bielus L P. The effect of water on the time-dependent deformation and fracture of a granite[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1987, 24(4): 247-255. http://www.sciencedirect.com/science/article/pii/0148906287901793
    [16]
    陈钢林, 周仁德. 水对受力岩石变形破坏宏观力学效应的实验研究[J]. 地球物理学报, 1991, 34(3): 335-342. doi: 10.3321/j.issn:0001-5733.1991.03.009

    Chen G L, Zhou R D. An experimental study concerning the macro-scopic effect of water on the deformation and failure of loaden rocks[J]. Acta Geophysica Sinic, 1991, 34(3): 335-342(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5733.1991.03.009
    [17]
    邓朝福, 刘建锋, 陈亮. 不同含水状态花岗岩断裂力学行为及声发射特征[J]. 岩土工程学报, 2017, 39(8): 1538-1544. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201708029.htm

    Deng C F, Liu J F, Chen L, et al. Mechanical behaviors and acoustic emission characteristics of fracture of granite under different moisture conditions[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1538-1544(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201708029.htm
    [18]
    许锡昌, 刘泉声. 高温下花岗岩基本力学性质初步研究[J]. 岩土工程学报, 2000, 22(3): 332-335. doi: 10.3321/j.issn:1000-4548.2000.03.014

    Xu X C, Liu Q S. A preliminary study of basic mechanical properties for granite at high temperature[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(3): 332-335(in Chinese with English abstract). doi: 10.3321/j.issn:1000-4548.2000.03.014
    [19]
    Alm O, Jaktlund L L. The influence of microcrack density on the elastic and fracture mechanical properties of Stripa granite[J]. Physics of the Earth and Planetary Interiors, 1985, 40(3): 161-179. doi: 10.1016/0031-9201(85)90127-X
    [20]
    Lau J S O, Jackson R. The effects of temperature and water-saturation on mechanical properties of Lac du Bonnet pink granite[C]//8th International Congress on Rock Mechanics. Tokyo, Japan: A.A. Balkema, 1995.
    [21]
    赵强, 骆进, 谭龙, 等. 支撑剂对单裂隙花岗岩的渗流特性与热交换影响试验研究[J]. 地质科技情报, 2018, 37(6): 288-297. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201806037.htm

    Zhao Q, Luo J, Tan L, et al. Propped stimulation of flow and heat exchange characteristics of single fracture granite[J]. Geological Science and Technology Information, 2018, 37(6): 288- 297(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201806037.htm
    [22]
    喻勇, 徐达, 窦斌, 等. 高温花岗岩遇水冷却后可钻性试验研究[J]. 地质科技情报, 2019, 38(4): 287-292. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904031.htm

    Yu Y, Xu D, Dou B, et al. Experimental study on drillability of high temperature granite after water cooling[J]. Geological Science and Technology Information, 2019, 38(4): 287-292(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904031.htm
    [23]
    曹洋兵, 陈玉华, 黄真萍, 等. 不同含水率条件下花岗岩脆性特征评价指标研究[J]. 工程地质学报, 2020, 28(1): 29-38. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202001004.htm

    Cao Y B, Chen Y H, Huang Z P, et al. Study on evaluation index of brittleness characteristics of granite under different water content conditions[J]. Journal of Engineering Geology, 2020, 28(1): 29-38(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202001004.htm
    [24]
    中国电力企业联合会. GB/T 50266-2013工程岩体试验方法标准[S]. 北京: 中国计划出版社, 2014.

    China Electricity Council. GB/T 50266-2013 Standard for test methods of engineering rock mass[S]. Beijing: China Planning Press, 2014(in Chinese).
    [25]
    谢学斌, 周瀚, 向天元. 砂岩单轴压缩与干湿循环耦合损伤试验研究[J]. 水文地质工程地质, 2016, 43(4): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201604013.htm

    Xie X B, Zhou H, Xiang T Y. An experimental study and simulation of damage of the single shaft compression and drying-wetting cycle in sandstone[J]. Hydrogeology & Engineering Geology, 2016, 43(4): 66-71(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201604013.htm
    [26]
    冯涛, 谢学斌, 潘长良, 等. 岩爆岩石断裂机理的电镜分析[J]. 中南工业大学学报: 自然科学版, 1999, 30(1): 14-17. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD901.004.htm

    Feng T, Xie X B, Pan C L, et al. Fracture mechanism analysis for burst rock with electron scanning microscope[J]. Journal of Central South University of Technology: Natural Science, 1999, 30(1): 14-17(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD901.004.htm
    [27]
    Kassner M E, Nnemat-Nasser S, Suo Z, et al. New directions in mechanics[J]. Mechanics of Materials, 2005, 37(2/3): 231-259. http://www.sciencedirect.com/science/article/pii/S016766360400081X
    [28]
    周盛涛, 方文, 蒋楠, 等. 冻融循环作用下砂岩单轴压缩破坏断口特征分形研究[J]. 地质科技通报, 2020, 39(5): 61-68. http://dzkjqb.cug.edu.cn/CN/abstract/abstract10051.shtml

    Zhou S T, Fang W, Jiang N, et al. Fractal geometry study on uniaxial compression fracture characteristics of sand stone subjected to freeze-thaw cycles[J]. Bulletin of Geological Science and Technology, 2020, 39(5): 61-68(in Chinese with English abstract). http://dzkjqb.cug.edu.cn/CN/abstract/abstract10051.shtml
    [29]
    谭以安. 岩爆岩石断口扫描电镜分析及岩爆渐进破坏过程[J]. 电子显微学报, 1989, 8(2): 41-48. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV198902008.htm

    Tan Y A. Analysis of fractured face of rock burst with scanning electron microscope and its progressive failure process[J]. Journal of Chinese Electron Microscopy Society, 1989, 8(2): 41-48(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV198902008.htm
    [30]
    郭军, 冯国瑞, 郭育霞, 等. 饱和水煌斑岩单轴压缩力学特性变化及其微观机理[J]. 煤炭学报, 2015, 40(2): 323-330. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201502014.htm

    Guo J, Feng G R, Guo Y X, et al. Mechanical property variation under dynamic uniaxial compression and micro-mechanism of lamprophyre in saturated state[J]. Journal of China Coal Society, 2015, 40(2): 323-330(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201502014.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(601) PDF Downloads(613) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return