Volume 40 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
Chen Shaowei, Liu Jianzhang. Research progress and prospects of the stages, genesis and fluid evolution of micro-fracture veins in petroliferous basins[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 81-92. doi: 10.19509/j.cnki.dzkq.2021.0426
Citation: Chen Shaowei, Liu Jianzhang. Research progress and prospects of the stages, genesis and fluid evolution of micro-fracture veins in petroliferous basins[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 81-92. doi: 10.19509/j.cnki.dzkq.2021.0426

Research progress and prospects of the stages, genesis and fluid evolution of micro-fracture veins in petroliferous basins

doi: 10.19509/j.cnki.dzkq.2021.0426
  • Received Date: 18 Aug 2020
  • Faults and fractures in sedimentary rocks are important channels for fluid activities in petroliferous basins.Different stages and types of mineral veins filled in fractures are the product of hydrocarbon-water-rock interactions, recording the formation process of faults and fractures fluid properties, components, sources, temperature and pressure fields, redox environment and other information in different stages of the process. They provide important clues to study the development of faults in sedimentary basins, the characteristics of fluid dynamic fields, physical and chemical environments.This paper systematically summarizes the basic methods of fluid activity tracing and evolution of fracture veins in petroliferous basins and their current geological applications, and believes that they are mainly concentrated in three aspects: First, through the petrological observation of diagenetic minerals filled with fracture veins, to analyze the type, structure and relative order of formation of diagenetic minerals; the second is to trace the nature, source, temperature and pressure of vein-forming paleo-fluids through geochemical tests such as isotopes, trace rare earth elements, and fluid inclusions of vein diagenetic minerals- redox environment, etc.; the third is to accurately determine the formation time of veins by testing radioisotopes of diagenetic minerals in veins(such as U-Pb, Re-Os, etc.), and discuss vein formation processes and hydrodynamic fields based on regional structural evolution environment and its dynamic evolution process.Finally, the problems of existing research methods are analyzed, and the future development trends and geological application prospects are discussed, in order to provide references for the study of the evolution of paleofluid in petroliferous basins and their relationship with hydrocarbon migration and accumulation and preservation.

     

  • loading
  • [1]
    [2]
    Rossi C, Marfil R, Ramseyer K, et al. Facies-related diagenesis and multiphase siderite cementation and dissolution in the reservoir sandstones of the Khatatba Formation, Egypt's western desert[J]. Journal of Sedimentary Research, 2001, 71(3): 459-472. doi: 10.1306/2DC40955-0E47-11D7-8643000102C1865D
    [3]
    赵靖舟, 李军, 徐泽阳. 沉积盆地超压成因研究进展[J]. 石油学报, 2017, 38(9): 973-998. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201709001.htm

    Zhao J Z, Li J, Xu Z Y. Advances in the origin of overpressures in sedimentary basins[J]. Acta Petrolei Sinica, 2017, 38(9): 973-998(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201709001.htm
    [4]
    苗凤彬, 彭中勤, 汪宗欣, 等. 雪峰隆起西缘下寒武统牛蹄塘组页岩裂缝发育特征及主控因素[J]. 地质科技通报, 2020, 39(2): 31-42. https://dzkjqb.cug.edu.cn/CN/abstract/abstract9972.shtml

    Miao F B, Peng Z Q, Wang Z X, et al. Development characteristics and major controlling factors of shale fractures in the Lower Cambrian Niutitang Formation, western margin of Xuefeng Uplift[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 31-42(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract9972.shtml
    [5]
    苟启洋, 徐尚, 郝芳, 等. 基于成像测井的泥页岩裂缝研究: 以焦石坝区块为例[J]. 地质科技通报, 2020, 39(6): 193-200. https://dzkjqb.cug.edu.cn/CN/abstract/abstract10085.shtml

    Gou Q Y, Xu S, Hao F, et al. Research on mud shale fractures based on image logging: A case study of Jiaoshiba area[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 193-200(in Chinese with English abstract). https://dzkjqb.cug.edu.cn/CN/abstract/abstract10085.shtml
    [6]
    苟启洋, 徐尚, 郝芳, 等. 纳米CT页岩孔隙结构表征方法: 以JY-1井为例[J]. 石油学报, 2018, 39(11): 1253-1261. doi: 10.7623/syxb201811005

    Gou Q Y, Xu S, Hao F, et al. Characterization method of shale pore structure based on nano CT: A case study of Well JY-1[J]. Acta Petrolei Sinica, 2018, 39(11): 1253-1261(in Chinese with English abstract). doi: 10.7623/syxb201811005
    [7]
    Pierson B J. The control of cathodoluminescence in dolomite by iron and manganese[J]. Sedimentology, 2006, 28(5): 601-610. doi: 10.1111/j.1365-3091.1981.tb01924.x
    [8]
    陈红汉, 吴悠, 朱红涛, 等. 塔中地区北坡中-下奥陶统早成岩岩溶作用及储层形成模式[J]. 石油学报, 2016, 37(10): 1231-1246. doi: 10.7623/syxb201610003

    Chen H H, Wu Y, Zhu H T, et al. Eogenetic karstification and reservoir formation model of the Middle-Lower Ordovician in the northeast slope of Tazhong uplift, Tarim Basin[J]. Acta Petrolei Sinica, 2016, 37(10): 1231-1246(in Chinese with English abstract). doi: 10.7623/syxb201610003
    [9]
    Becker S P, Eichhubl P, Laubach S E, et al. A 48 my history of fracture opening, temperature, and fluid pressure: Cretaceous Travis Peak Formation, East Texas Basin[J]. Geological Society of America Bulletin, 2010, 122(7/8): 1081-1093. http://adsabs.harvard.edu/abs/2010GSAB..122.1081B
    [10]
    卢焕章, 范宏瑞, 倪培, 等. 流体包裹体[M]. 北京: 科学出版社, 2004.

    Lu H Z, Fan H R, Ni P, et al. Fluid inclusions[M]. Beijing: Science Press, 2004(in Chinese with English abstract).
    [11]
    Bakker R J. Raman spectra of fluid and crystal mixtures in the systems H2O, H2O-NaCl and H2O-MgCl2 at low temperatures: Applications to fluid-inclusion research[J]. The Canadian Mineralogist, 2004, 42(5): 1283-1314. doi: 10.2113/gscanmin.42.5.1283
    [12]
    Mernagh T P, Wilde A R. The use of the laser Raman microprobe for the determination of salinity in fluid inclusions[J]. Geochimica et Cosmochimica Acta, 1989, 53(4): 765-771. doi: 10.1016/0016-7037(89)90022-7
    [13]
    倪培, 丁俊英, 饶冰. 人工合成H2O及NaCl-H2O体系流体包裹体低温原位拉曼光谱研究[J]. 科学通报, 2006(9): 1073-1078. doi: 10.3321/j.issn:0023-074X.2006.09.012

    Ni P, Ding J Y, Rao B. In-situ cryogenic Raman spectroscopic studies on the synthetic fluid inclusions in the systems H2O and NaCl-H2O[J]. Chinese Science Bulletin, 2006(9): 1073-1078(in Chinese with English abstract). doi: 10.3321/j.issn:0023-074X.2006.09.012
    [14]
    陈小兰, 周振柱, 韩作振, 等. 低温拉曼光谱分析流体包裹体盐度的条件约束[J]. 光谱学与光谱分析, 2017, 37(8): 2446-2451. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201708026.htm

    Chen X L, Zhou Z Z, Han Z Z, et al. The constraints on the method of using cryogenic Raman spectroscopy to determine the salinities of fluid inclusions[J]. Spectroscopy and Spectral Analysis, 2017, 37(8): 2446-2451(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201708026.htm
    [15]
    Jones D M, Macleod G. Molecular analysis of petroleum in fluid inclusions: A practical methodology[J]. Organic Geochemistry, 2000, 31(11): 1163-1173. doi: 10.1016/S0146-6380(00)00115-7
    [16]
    Ping H W, Li C Q, Chen H H, et al. Overpressure release: Fluid inclusion evidence for a new mechanism for the formation of heavy oil[J]. Geology, 2020, 48(8): 803-807. doi: 10.1130/G47227.1
    [17]
    Pettke T, Oberli F, Audétat A, et al. Recent developments in element concentration and isotope ratio analysis of individual fluid inclusions by laser ablation single and multiple collector ICP-MS[J]. Ore Geology Reviews, 2011, 44: 10-38. http://www.sciencedirect.com/science/article/pii/S016913681100134X
    [18]
    Frezzotti M L, Tecce F, Casagli A. Raman spectroscopy for fluid inclusion analysis[J]. Journal of Geochemical Exploration, 2012, 112: 1-20. doi: 10.1016/j.gexplo.2011.09.009
    [19]
    Tsui T F, Holland H D. The analysis of fluid inclusions by laser microprobe[J]. Economic Geology, 1979, 74(7): 1647-1653. doi: 10.2113/gsecongeo.74.7.1647
    [20]
    施伟军, 席斌斌, 秦建中, 等. 单体油气包裹体激光剥蚀在线成分分析技术: 以塔河油田奥陶系储层为例[J]. 石油学报, 2016, 37(2): 196-206. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201602005.htm

    Shi W J, Xi B B, Qin J Z, et al. Online laser ablation compositional analysis technique for single hydrocarbon inclusion: A case study of the Ordovician reservoirs in Tahe Oilfield, Tarim Basin, NW China[J]. Acta Petrolei Sinica, 2016, 37(2): 196-206(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201602005.htm
    [21]
    Volk H, Fuentes D, Fuerbach A, et al. First on-line analysis of petroleum from single inclusion using ultrafast laser ablation[J]. Organic Geochemistry, 2010, 41(2): 74-77. doi: 10.1016/j.orggeochem.2009.05.006
    [22]
    Liu D H, Xiao X M, Mi J K, et al. Determination of trapping pressure and temperature of petroleum inclusions using PVT simulation software: A case study of Lower Ordovician carbonates from the Lunnan Low Uplift, Tarim Basin[J]. Marine and Petroleum Geology, 2003, 20(1): 29-43. doi: 10.1016/S0264-8172(03)00047-3
    [23]
    Aplin A C, Macleod G, Larter S R, et al. Combined use of Confocal Laser Scanning Microscopy and PVT simulation for estimating the composition andphysical properties of petroleum in fluid inclusions[J]. Marine and Petroleum Geology, 1999, 16(2): 97-110. doi: 10.1016/S0264-8172(98)00079-8
    [24]
    王瑀辉. 渝东南彭水地区龙马溪组地层压力演化[D]. 北京: 中国石油大学(北京), 2018.

    Wang Y H. Evolution of formation fluid pressure in Longmaxi Formation, Pengshui area, Southeast Chongqing[D]. Beijing: China University of Petroleum(Beijing), 2018(in Chinese with English abstract).
    [25]
    Lin F, Bodnar R, Becker S. Experimental determination of the Raman CH4 symmetric stretching(ν1) band position from 1650 bar and 0.3-22℃: Application to fluid inclusion studies[J]. Geochimica et Cosmochimica Acta, 2007, 71(15): 3746-3756. doi: 10.1016/j.gca.2007.05.016
    [26]
    Lu W, Chou I, Burruss R, et al. A unified equation for calculating methane vapor pressures in the CH4-H2O system with measured Raman shifts[J]. Geochimica et Cosmochimica Acta, 2007, 71(16): 3969-3978. doi: 10.1016/j.gca.2007.06.004
    [27]
    Duan Z H, Møller N, Weare J H. An equation of state for the CH4-CO2-H2O system: Ⅰ. Pure systems from 0 to 1000℃ and 0 to 8000 bar[J]. Pergamon, 1992, 56(7): 2605-2617. http://www.sciencedirect.com/science/article/pii/001670379290347L
    [28]
    Duan Z H, Møller N, Weare J H. An equation of state for the CH4-CO2-H2O system: Ⅱ. Mixtures from 50 to 1000℃ and 0 to 1000 bar[J]. Pergamon, 1992, 56(7): 2619-2631. http://www.sciencedirect.com/science/article/pii/001670379290348M
    [29]
    高键, 何生, 易积正. 焦石坝页岩气田中高密度甲烷包裹体的发现及其意义[J]. 石油与天然气地质, 2015, 36(3): 472-480. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201503018.htm

    Gao J, He S, Yi J Z. Discovery of high density methane inclusions in Jiaoshiba shale gas field and its significance[J]. Oil & Gas Geology, 2015, 36(3): 472-480(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201503018.htm
    [30]
    施伟军, 席斌斌. 应用包裹体技术恢复气藏古压力[J]. 石油实验地质, 2016, 38(1): 128-134. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201601019.htm

    Shi W J, Xi B B. Calculation of paleo-pressure in gas reservoirs using fluid inclusions[J]. Petroleum Geology & Experiment, 2016, 38(1): 128-134(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201601019.htm
    [31]
    Pironon J, Thiery R, Ougougdal M A, et al. FT-IR measurements of petroleum fluid inclusions: Methane, n-alkanes and carbon dioxide quantitative analysis[J]. Geofluids, 2001, 1(1): 2-10. doi: 10.1046/j.1468-8123.2001.11002.x
    [32]
    Rankin A H, Ramsey M H, Coles B, et al. The composition of hypersaline, iron-rich granitic fluids based on laser-ICP and synchrotron-XRF microprobe analysis of individual fluid inclusions in topaz, Mole granite, eastern Australia[J]. Geochimica et Cosmochimica Acta, 1992, 56(1): 67-79. doi: 10.1016/0016-7037(92)90117-2
    [33]
    Anderson A J, Ckark A H, Ma X P, et al. Proton-induced X-ray and gamma-ray emission analysis of unopened fluid inclusions[J]. Economic Geology, 1989, 84(4): 924-939. doi: 10.2113/gsecongeo.84.4.924
    [34]
    Hall P A, Watson A F R, Garner G V, et al. An investigation of micro-scale sealed vessel thermal extraction-gas chromatography-mass spectrometry(MSSV-GC-MS) and micro-scale sealed vessel pyrolysis-gas chromatography-mass spectrometry applied to a standard reference material of an urban dust/organics[J]. Science of the Total Environment, 1999, 235(1): 269-276. http://www.sciencedirect.com/science/article/pii/S0048969799002041
    [35]
    Eichhubl P, Boles J R. Focused fluid flow along faults in the Monterey Formation, coastal California[J]. Geological Society of America Bulletin, 2000, 112(11): 1667-1679. doi: 10.1130/0016-7606(2000)112<1667:FFFAFI>2.0.CO;2
    [36]
    Worden R H, Benshatwan M S, Potts G J, et al. Basin-scale fluid movement patterns revealed by veins: Wessex Basin, UK[J]. Geofluids, 2016, 16(1): 149-174. doi: 10.1111/gfl.12141
    [37]
    Azmy K, Veizer J, Wenzel B, et al. Silurian strontium isotope stratigraphy[J]. GSA Bulletin, 1999, 111(4): 475-483. doi: 10.1130/0016-7606(1999)111<0475:SSIS>2.3.CO;2
    [38]
    Dogramaci S S, Herczeg A L. Strontium and carbon isotope constraints on carbonate-solution interactions and inter-aquifer mixing in groundwaters of the semi-arid Murray Basin, Australia[J]. Journal of Hydrology, 2002, 262(1/4): 50-67. http://www.sciencedirect.com/science/article/pii/S0022169402000215
    [39]
    Fietzke J, Eisenhauer A. Determination of temperature-dependent stable strontium isotope(88Sr/86Sr) fractionation via bracketing standard MC-ICP-MS[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(8), DOI: 10.1029/2006-GC001243.
    [40]
    Veizer J, Ala D, Azmy K, et al. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater[J]. Chemical Geology, 1991, 161: 59-88.
    [41]
    郑永飞. 稳定同位素体系理论模式及其矿床地球化学应用[J]. 矿床地质, 2001, 20(1): 57-70, 85. doi: 10.3969/j.issn.0258-7106.2001.01.007

    Zheng Y F. Theoretical modeling of stable isotope systems and its applications to geochemistry of hydrothermal ore deposits[J]. Mineral Deposits, 2001, 20(1): 57-70, 85(in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2001.01.007
    [42]
    钱一雄, 沙旭光, 李慧莉, 等. 塔里木盆地塔中西部加里东中、晚期构造-层序结构与奥陶系碳酸盐岩储集体分布[J]. 地学前缘, 2013, 20(1): 260-274. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201301023.htm

    Qian Y X, Sha X G, Li H L, et al. An approach to Caledonian unconformities and sequence stratigraphic patterns and distribution of reservoirs of Ordovician carbonate in the western Tazhong area, Tarim Basin[J]. Earth Science Frontiers, 2013, 20(1): 260-274(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201301023.htm
    [43]
    Caja M A, Permanyer A, Marfil R, et al. Fluid flow record from fracture-fill calcite in the Eocene limestones from the South-Pyrenean Basin(NE Spain) and its relationship to oil shows[J]. Journal of Geochemical Exploration, 2006, 89(1/3): 27-32.
    [44]
    Lottermoser B G. Rare earth elements and hydrothermal ore formation processes[J]. Ore Geology Reviews, 1992, 7(1): 25-41. doi: 10.1016/0169-1368(92)90017-F
    [45]
    Tostevin R, Shields G A, Tarbuck G, et al. Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings[J]. Chemical Geology, 2016, 438: 146-162. doi: 10.1016/j.chemgeo.2016.06.027
    [46]
    Bau M, M ller P. Rare earth element fractionation in metamorphogenic hydrothermal calcite, magnesite and siderite[J]. Mineralogy & Petrology, 1992, 45(45): 231-246. doi: 10.1007%2FBF01163114
    [47]
    杨建, 王国芝, 李娜, 等. 川东南二叠系区域盖层沥青来源稀土元素示踪[J]. 云南地质, 2011, 30(2): 226-228. doi: 10.3969/j.issn.1004-1885.2011.02.029

    Yang J, Wang G Z, Li Na, et al. The REE tracer of pitch origin Permian regional super imposition bed in SE Sichuan[J]. Yunnan Geology, 2011, 30(2): 226-228(in Chinese with English abstract). doi: 10.3969/j.issn.1004-1885.2011.02.029
    [48]
    金之钧, 朱东亚, 孟庆强, 等. 塔里木盆地热液流体活动及其对油气运移的影响[J]. 岩石学报, 2013, 29(3): 1048-1058. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201303026.htm

    Jin Z J, Zhu D Y, Meng Q Q, et al. Hydrothermal activites and influences on migration of oil and gas in Tarim Basin[J]. Acta Petrologica Sinica, 29(3): 1048-1058(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201303026.htm
    [49]
    何顺, 秦启荣, 周吉羚, 等. 川东南DS地区龙马溪组页岩裂缝发育特征及期次解析[J]. 地质科技情报, 2019, 38(2): 101-109. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902012.htm

    He S, Qin Q R, Zhou J L, et al. Shale fracture characteristics and its application of the Longmaxi Formation in DS area, Southeast Sichuan[J]. Geological Science and Technology Information, 2019, 38(2): 101-109(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902012.htm
    [50]
    Parnell J, Carey P, Duncan W. History of hydrocarbon charge on the Atlantic margin: Evidence from fluid-inclusion studies, West of Shetland[J]. Geology, 1998, 26(9): 807-810. doi: 10.1130/0091-7613(1998)026<0807:HOHCOT>2.3.CO;2
    [51]
    Bourdet J, Burruss R C, Chou I M, et al. Evidence for a palaeo-oil column and alteration of residual oil in a gas-condensate field: Integrated oil inclusion and experimental results[J]. Geochimica et Cosmochimica Acta, 2014, 142: 362-385. doi: 10.1016/j.gca.2014.07.022
    [52]
    吴河勇, 云建兵, 冯子辉, 等. 松辽盆地深层CO2气藏40Ar/39Ar成藏年龄探讨[J]. 科学通报, 2010, 55(8): 693-697. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201008007.htm

    Wu H Y, Yun J B, Feng Z H, et al. CO2 gas emplacement age in the Songliao Basin: Insight from volcanic quartz 40Ar-39Ar stepwise crushing[J]. Chinese Science Bulletin, 2010, 55(8): 693-697(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201008007.htm
    [53]
    Qiu H N, Wu H Y, Yun J B, et al. High-precision40Ar/39Ar age of the gas emplacement into the Songliao Basin[J]. Geology, 2011, 39(5): 451-454. doi: 10.1130/G31885.1
    [54]
    刘昭茜, 梅廉夫, 邱华宁, 等. 中扬子地块南缘半坑古油藏成藏期及破坏期的40Ar/39Ar年代学约束[J]. 科学通报, 2011, 56(33): 2782-2790. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201133008.htm

    Liu Z Q, Mei L F, Qiu H N, et al. 40Ar/39Ar geochronology constraints on hydrocarbon accumulation and destruction periods in the Bankeng paleo-reservoir in the southern margin of the middle Yangtze block[J]. Chinese Science Bulletin, 2011, 56(33): 2782-2790(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201133008.htm
    [55]
    Nguyen T H, Nevolko P A, Pham T D, et al. Age and genesis of the W-Bi-Cu-F(Au) Nui Phao deposit, Northeast Vietnam: Constrains from U-Pb and Ar-Ar geochronology, fluid inclusions study, S-O isotope systematic and scheelite geochemistry[J]. Ore Geology Reviews, 2020, 123: 103578. doi: 10.1016/j.oregeorev.2020.103578
    [56]
    Zhu B Q, Zhang J L, Tu X L, et al. Pb, Sr and Nd isotopic features in organic matter from China and their implications for petroleum generation and migration[J]. Geotectonica et Cosmochimica Acta, 2001, 65(15): 2555-2570. doi: 10.1016/S0016-7037(01)00608-1
    [57]
    沈传波, Selby D, 梅廉夫, 等. 油气成藏定年的Re-Os同位素方法应用研究[J]. 矿物岩石, 2011, 31(4): 87-93. doi: 10.3969/j.issn.1001-6872.2011.04.014

    Shen C B, Selby D, Mei L F, et al. Advances in the study of Re-Os geochronology and tracing of hydrocarbon generation and accumulation[J]. Journal of Mineralogy and Petrology, 2011, 31(4): 87-93(in Chinese with English abstract). doi: 10.3969/j.issn.1001-6872.2011.04.014
    [58]
    Selby D, Creaser R A, Dewing K, et al. Evaluation of bitumen as a187Re-187Os geochronometer for hydrocarbon maturation and migration: A test case from the Polaris MVT deposit, Canada[J]. Earth and Planetary Science Letters, 2005, 235(1): 1-15. http://www.sciencedirect.com/science/article/pii/S0012821X05001202
    [59]
    Lillis P G, Selby D. Evaluation of the rhenium-osmium geochronometer in the Phosphoria petroleum system, Bighorn Basin of Wyoming and Montana, USA[J]. Geochimica et Cosmochimica Acta, 2013, 118: 312-330. doi: 10.1016/j.gca.2013.04.021
    [60]
    Corrick A J, Selby D, Mckirdy D M, et al. Remotely constraining the temporal evolution of offshore oil systems[J]. Scientific Reports, 2019, 9(1): 1327. doi: 10.1038/s41598-018-37884-x
    [61]
    李欣尉, 李超, 周利敏, 等. 贵州正安县奥陶系-志留系界线碳质泥岩Re-Os同位素精确厘定及其古环境反演[J]. 岩矿测试, 2020, 39(2): 251-261. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS202002012.htm

    Li X W, Li C, Zhou L M, et al. Accurate determination of the age of the carbonaceous mudstone of the Ordovician-Silurian boundary in Zheng'an County, Guizhou Province by Re-Os isotope dating method and its application in paleoenvironmental inversion[J]. Rock and Mineral Analysis, 2020, 39(2): 251-261(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS202002012.htm
    [62]
    Chen X C, Hu R Z, Bi X W, et al. Cassiterite LA-MC-ICP-MS U/Pb and muscovite40Ar/39Ar dating of tin deposits in the Tengchong-Lianghe tin district, NW Yunnan, China[J]. Mineralium Deposita, 2014, 49(7): 843-860. doi: 10.1007/s00126-014-0513-8
    [63]
    梁文博, 郭瑞清, 刘桂萍, 等. 新疆库鲁克塔格西段橄榄辉长岩脉LA-ICP-MS锆石U-Pb年龄、地球化学特征及其构造意义[J]. 地质科技情报, 2019, 38(1): 58-67. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901007.htm

    Liang W B, Guo R Q, Liu G P, et al. LA-ICP MS zircon U-Pb age and geochemistry of the olivine gabbro dike in the western segment of Kuruktag, Xinjiang and its tectonic significance[J]. Geological Science and Technology Information, 2019, 38(1): 58-67(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901007.htm
    [64]
    Li Q, Parrish R R, Horstwood M S A, et al. U-Pb dating of cements in Mesozoic ammonites[J]. Chemical Geology, 2014, 376: 76-83. doi: 10.1016/j.chemgeo.2014.03.020
    [65]
    郭小文, 陈家旭, 袁圣强, 等. 含油气盆地激光原位方解石U-Pb年龄对油气成藏年代的约束: 以渤海湾盆地东营凹陷为例[J]. 石油学报, 2020, 41(3): 284-291. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202003005.htm

    Guo X W, Chen J X, Yuan S Q, et al. Constraint of in-situ calcite U-Pb dating by laser ablation on geochronology of hydrocarbon accumulation in petroliferous basins: A case study of Dongying Sag in the Bohai Bay Basin[J]. Acta Petrolei Sinica, 2020, 41(3): 284-291(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202003005.htm
    [66]
    Mangenot X, Gasparrini M, Gerdes A, et al. An emerging thermochronometer for carbonate-bearing rocks: Δ47/(U-Pb)[J]. Geology, 2018, 46(12): 1067-1070. doi: 10.1130/G45196.1
    [67]
    Roberts N M, Walker R J. U-Pb geochronology of calcite-mineralized faults: Absolute timing of rift-related fault events on the northeast Atlantic margin[J]. Geology, 2016, 44(7): 531-534. doi: 10.1130/G37868.1
    [68]
    Beerten K, Stesmans A. ESR dating of sedimentary quartz: Possibilities and limitations of the single-grain approach[J]. Quaternary Geochronology, 2007, 2(1): 373-380. http://www.sciencedirect.com/science/article/pii/S1871101406000045
    [69]
    Aydas C, Engin B, Aydin T. Radiation-induced signals of gypsum crystals analysed by ESR and TL techniques applied to dating[J]. Nuclear Inst. and Methods in Physics Research, 2011, 269(4): 417-424. doi: 10.1016/j.nimb.2010.12.074
    [70]
    Bourdet J, Pironon J. Strain response and re-equilibration of CH4-rich synthetic aqueous fluid inclusions in calcite during pressure drops[J]. Geochimica et Cosmochimica Acta, 2008, 72(12): 2946-2959. doi: 10.1016/j.gca.2008.04.012
    [71]
    Parnell J, Swainbank I. Pb-Pb dating of hydrocarbon migration into a bitumen-bearing ore deposit, North Wales[J]. Geology, 1990, 18(10): 1028-1030. doi: 10.1130/0091-7613(1990)018<1028:PPDOHM>2.3.CO;2
    [72]
    Creaser R A, Sannigrahi P, Chacko T, et al. Further evaluation of the Re-Os geochronometer in organic-rich sedimentary rocks: A test of hydrocarbon maturation effects in the Exshaw Formation, Western Canada Sedimentary Basin[J]. Geochimica et Cosmochimica Acta, 2002, 66(19): 3441-3452. doi: 10.1016/S0016-7037(02)00939-0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(562) PDF Downloads(544) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return