Volume 40 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
Zhou Chengjiao, Zhang Gangyang, Zhang Dingchuan. Types, element occurrence forms and enrichment mechanisms of rhenium metal deposits[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 115-130. doi: 10.19509/j.cnki.dzkq.2021.0431
Citation: Zhou Chengjiao, Zhang Gangyang, Zhang Dingchuan. Types, element occurrence forms and enrichment mechanisms of rhenium metal deposits[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 115-130. doi: 10.19509/j.cnki.dzkq.2021.0431

Types, element occurrence forms and enrichment mechanisms of rhenium metal deposits

doi: 10.19509/j.cnki.dzkq.2021.0431
  • Received Date: 26 Dec 2020
  • Rhenium is a strategic rare metal mineral that rarely forms independent deposits.Most of it is produced in the form of associated elements in the porphyry magmatic hydrothermal system.Studies have shown that rhenium-rich deposits are mainly distributed on the edges of active oceans or continental plates, and their genesis are mainly closely related to plate subduction or collision.The mineralization age of rich rhenium deposits is relatively new, mainly in the Himalayan and Yanshanian periods.There are about 11 independent rhenium minerals reported, mainly including natural rhenium, pyrite, copper rhenium, ruthenium rhenium, rhenium oxide, etc., among which rhenium sulfite is the main one.Most rhenium is mainly present in molybdenite in the form of isomorphism, followed by chalcopyrite, pyrite, wolframite. Rhenium-rich molybdenite is usually formed in a medium-low temperature hydrothermal system.Rhenium in molybdenite often shows heterogeneity and multi-stage enrichment characteristics.The most common replacement mechanism is Re4+↔Mo4+.In nature, due to the unique chemical behavior of rhenium, rhenium can migrate in the form of gas phase, complex or ion.Under different physical and chemical conditions (such as temperature, pH, oxygen fugacity, sulfur fugacity), relatively low temperature, low pH, and reducing environment are more conducive to the enrichment and precipitation of rhenium.The paper points out that in order to further improve the metallogenic theory of rhenium, it is necessary to focus on the research on the source, occurrence state and enrichment mechanism of rhenium.

     

  • loading
  • [1]
    Vinogradov A P. Average concentration of chemical elements in the chief types of igneous rocks of the crust of the Earth[J]. Geochemistry, 1962, 7, 555-571.
    [2]
    Stein H J, Markey R J, Morgan J W, et al. The remarkable Re-Os chronometer in molybdenite: How and why it works[J]. Terra Nova, 2001, 13(6): 479-486. doi: 10.1046/j.1365-3121.2001.00395.x
    [3]
    Xiong Y L, Wood S A. Hydrothermal transport and deposition of rhenium under subcritical conditions (up to 200℃) in light of experimental studies[J]. Econimic Geology, 2001, 96(6): 1429-1444. http://www.researchgate.net/publication/284908569_Hydrothermal_Transport_and_Deposition_of_Rhenium_under_Subcritical_Conditionsup_to_200_C_in_Light_of_Experimental_Studies
    [4]
    Xiong Y L, Wood S A. Experimental determination of the hydrothermal solubility of ReS2 and the Re-ReO2 buffer assemblage and transport of rhenium under supercritical conditions[J]. Geochemical Transactions, 2002, 3(1): 1-10. doi: 10.1186/1467-4866-3-1
    [5]
    Berzina A N, Sotnikov V I, Economou-Eliopoulos M, et al. Distribution of rhenium in molybdenite from porphyry Cu-Mo and Mo-Cu deposits of Russia (Siberia) and Mongolia[J]. Ore Geology Review, 2005, 26(1/2): 91-113. http://www.sciencedirect.com/science/article/pii/S0169136804000496
    [6]
    Voudouris P, Melfos V, Spry P, et al. Rhenium-rich molybdenite and rheniite in the Pagoni Rachi Mo-Cu-Te-Ag-Au prospect, northern Greece: Implications for the Re geochemistry of porphyry-style Cu-Mo and Mo mineralization[J]. Canadian Mineralogist, 2009, 47(5): 1013-1036. doi: 10.3749/canmin.47.5.1013
    [7]
    Seo J H, Guillong M, Heinrich C A. Separation of molybdenum and copper in porphyry deposits: The roles of sulfur, redox, and pH in ore mineral deposition at Bingham Canyon[J]. Economic Geology, 2012, 107(2): 333-356. doi: 10.2113/econgeo.107.2.333
    [8]
    John, D A, Taylor R D. By products of porphyry copper and molybdenum deposits[J]. Society of Economic Geologists, 2016, 18(7): 137-164. http://www.researchgate.net/publication/336543134_By-Products_of_Porphyry_Copper_and_Molybdenum_Deposits
    [9]
    Babo J, Spandler C, Oliver N H S, et al. The high-grade Mo-Re Merlin deposit, Cloncurry district, Australia: Paragenesis and geochronology of hydrothermal alteration and ore formation[J]. Economic Geology, 2017, 112(2): 397-422. doi: 10.2113/econgeo.112.2.397
    [10]
    U.S. Geological Survey(USGS). Mineral commodity summaries 2019: U.S. Geological Survey, 200P, https://doi.org/10.3133.70202434.
    [11]
    John D A, Seal R R, SEAL I I, et al. Critical mineral resources of the United States: Economic and environmental geology and prospects for future supply: U.S. Geological Survey Professional Paper 1802, 2017, P1-P49, https://doi.org/10.3133/pp1802p.
    [12]
    黄凡, 王登红, 王岩, 等. 中国铼矿成矿规律和找矿方向研究[J]. 地质学报, 2019, 93(6): 1253-1269. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201906007.htm

    Huang F, Wang D H, Wang Y, et al. Research on the metallogenic law and prospecting direction of rhenium deposits in China[J]. Acta Geologica Sinica, 2019, 93(6): 1253-1269(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201906007.htm
    [13]
    杨志明, 侯增谦, 周利敏, 等. 中国斑岩铜矿床中的主要关键矿产[J]. 科学通报, 2020, 65(33): 3653-3664. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202033003.htm

    Yang Z M, Hou Z Q, Zhou L M, et al. Main key minerals in porphyry copper deposits in China[J]. Chinese Science Bulletin, 2020, 65(33): 3653-3664(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202033003.htm
    [14]
    Tessalina S G, Yudovskaya M A, Chaplygin I V, et al. Sources of unique rhenium enrichment in fumaroles and sulphides at Kudryavy volcano[J]. Geochimica et Cosmochimica Acta, 2008, 72(2): 889-909. http://www.sciencedirect.com/science/article/pii/S0016703707006722
    [15]
    Mathur R, Ruiz J R, Munizaga F M. Insights into Andean metallogenesis from the perspective of Re-Os analyses of sulfides[C]//Anon. SERNAGEOMIN, South American isotope conference, Pucon, Chile 2001, 4.
    [16]
    周清, 姜耀辉, 廖世勇, 等. 德兴斑岩铜矿床研究新进展[J]. 地质论评, 2013, 59(5): 933-940. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201305015.htm

    Zhou Q, Jiang Y H, Liao S Y, et al. New progress in the study of Dexing porphyry copper deposits[J]. Geological Review, 2013, 59(5): 933-940(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201305015.htm
    [17]
    唐菊兴, 王友, 黎风佶, 等. 西藏谢通门县雄村铜金矿主要地质体形成的时限: 锆石U-Pb、辉钼矿Re-Os年龄的证据[J]. 矿床地质, 2010, 29(3): 461-475. doi: 10.3969/j.issn.0258-7106.2010.03.008

    Tang J X, Wang Y, Li F J, et al. The time limit of the formation of the main geological bodies of the Xiongcun copper-gold deposit in Xietongmen County, Tibet: Evidence of zircon U-Pb and molybdenite Re-Os ages[J]. Deposit Geology, 2010, 29(3): 461-475(in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2010.03.008
    [18]
    黄典豪. 东秦岭地区钼矿床中辉钼矿的铼含量及多型特征[J]. 岩石矿物学杂志, 1992, 11(1): 74-84. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW199201009.htm

    Huang D H. Rhenium content and polytype characteristics of molybdenite in molybdenite deposits in Eastern Qinling area[J]. Journal of Rock and Mineralogy, 1992, 11(1): 74-84(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW199201009.htm
    [19]
    李永峰, 王春秋, 白凤军, 等. 东秦岭钼矿Re-Os同位素年龄及其成矿动力学背景[J]. 矿产与地质, 2004, 18(6): 571-578. doi: 10.3969/j.issn.1001-5663.2004.06.014

    Li Y F, Wang C Q, Bai F J, et al. Re-Os isotopic ages of the molybdenum deposit in the East Qinling and its mineralization dynamic background[J]. Mineral Resources and Geology, 2004, 18(6): 571-578(in Chinese with English abstract). doi: 10.3969/j.issn.1001-5663.2004.06.014
    [20]
    孟祥金. 安徽沙坪沟斑岩钼矿锆石U-Pb和辉钼矿Re-Os年龄[J]. 地质学报, 2012, 86(3): 486-494. doi: 10.3969/j.issn.0001-5717.2012.03.010

    Meng X J. Zircon U-Pb and molybdenite Re-Os ages of the porphyry molybdenum deposit in Shapinggou, Anhui[J]. Acta Geologica Sinica, 2012, 86(3): 486-494(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2012.03.010
    [21]
    Aminzadeh B, Shahabpour J, Maghami M. Variation of rhenium contents in molybdenites from the Sar Cheshmeh porphyry Cu-Mo deposit in Iran[J]. Resource Geology, 2011, 61(3): 290-295. doi: 10.1111/j.1751-3928.2011.00165.x
    [22]
    杨宗锋, 罗照华, 卢欣祥, 等. 关于辉钼矿中Re含量示踪来源的讨论[J]. 矿床地质, 2011, 30(4): 654-674. doi: 10.3969/j.issn.0258-7106.2011.04.006

    Yang Z F, Luo Z H, Lu X X, et al. Discussion on the trace source of Re content in molybdenite[J]. Deposit Geology, 2011, 30(4): 654-674(in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2011.04.006
    [23]
    刘芳, 宋史刚, 丁振举, 等. 甘肃小柳沟钨钼矿床Re-Os、Ar-Ar同位素定年及其成矿意义[J]. 地质科技情报, 2013, 32(6): 65-72. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201306012.htm

    Liu F, Song S G, Ding Z J, et al. Re-Os and Ar-Ar isotopic dating of the Xiaoliugou tungsten-molybdenum deposit in Gansu and its metallogenic significance[J]. Geological Science and Technology Information, 2013, 32(6): 65-72(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201306012.htm
    [24]
    谢桂青, 赵海杰, 赵财胜, 等. 鄂东南铜绿山矿田矽卡岩型铜铁金矿床的辉钼矿Re-Os同位素年龄及其地质意义[J]. 矿床地质, 2009, 28(3): 227-239. doi: 10.3969/j.issn.0258-7106.2009.03.001

    Xie G Q, Zhao H J, Zhao C S, et al. The molybdenite Re-Os isotopic age of the skarn copper-iron-gold deposit in the Tonglushan ore field in Southeast Hubei and its geological significance[J]. Deposit Geology, 2009, 28(3): 227-239(in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2009.03.001
    [25]
    黄典豪, 杜安道, 吴澄宇, 等. 华北地台钼(铜)矿床成矿年代学研究: 辉钼矿铼-锇年龄及其地质意义[J]. 矿床地质, 1996, 15(4): 365-373. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ604.008.htm

    Huang D H, Du A D, Wu C Y, et al. Metallogenic chronology of molybdenum (copper) deposits on the North China platform: Molybdenite rhenium-osmium age and its geological significance[J]. Deposit Geology, 1996, 15(4): 365-373(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ604.008.htm
    [26]
    代军治, 毛景文, 杜安道, 等. 辽西肖家营子钼(铁)矿床Re-Os年龄及其地质意义[J]. 地质学报, 2007, 81(7): 917-923. doi: 10.3321/j.issn:0001-5717.2007.07.006

    Dai J Z, Mao J W, Du A D, et al. Re-Os age of the Xiaojiayingzi molybdenum (iron) deposit in western Liaoning and its geological significance[J]. Acta Geologica Sinica, 2007, 81(7): 917-923(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2007.07.006
    [27]
    应立娟, 王登红, 唐菊兴, 等. 西藏甲玛铜多金属矿辉钼矿Re-Os定年及其成矿意义[J]. 地质学报, 2010, 84(8): 1166-1174. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201008010.htm

    Ying L J, Wang D H, Tang J X, et al. Re-Os dating of molybdenite from Jiama copper polymetallic deposit in Tibet and its metallogenic significance[J]. Acta Geologica Sinica, 2010, 84(8): 1166-1174(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201008010.htm
    [28]
    唐菊兴, 邓世林, 郑文宝, 等. 西藏墨竹工卡县甲玛铜多金属矿床勘查模型[J]. 矿床地质, 2011, 30(2): 179-196. doi: 10.3969/j.issn.0258-7106.2011.02.002

    Tang J X, Deng S L, Zheng W B, et al. Exploration model of Jiama copper polymetallic deposit in Mozhugongka County, Tibet[J]. Deposit Geology, 2011, 30(2): 179-196(in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2011.02.002
    [29]
    张苏坤, 郑有业, 张刚阳, 等. 西藏曲水县鸡公村石英脉型钼矿床成矿时代约束[J]. 矿床地质, 2013, 32(3): 187-194. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201303014.htm

    Zhang S K, Zheng Y Y, Zhang G Y, et al. Mineralization age constraints of the quartz vein-type molybdenum deposit in Jigong Village, Qushui County, Tibet[J]. Deposit Geology, 2013, 32(3): 187-194(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201303014.htm
    [30]
    王健, 魏启荣, 次琼, 等. 西藏鸡公村钼矿区中酸性岩体的时代、岩石地球化学特征及构造背景[J]. 地学前缘, 2018, 25(6): 153-164. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201806014.htm

    Wang J, Wei Q R, Ci Q, et al. Age, petrogeochemical characteristics and tectonic background of the acidic rock mass in the molybdenum mining area of Jigongcun, Tibet[J]. Earth Science Frontiers, 2018, 25(6): 153-164(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201806014.htm
    [31]
    王正其, 潘家永, 曹双林, 等. 层间氧化带分散元素铼与硒的超常富集机制探讨: 以伊犁盆地扎吉斯坦层间氧化带砂岩型铀矿床为例[J]. 地质论评, 2006, 52(3): 358-362. doi: 10.3321/j.issn:0371-5736.2006.03.017

    Wang Z Q, Pan J Y, Cao S L, et al. Discussion on the extraordinary enrichment mechanism of the dispersed elements rhenium and selenium in the interlayer oxidation zone: Taking the interlayer oxidation zone sandstone-type uranium deposit in the Yili Basin as an example[J]. Geological Review, 2006, 52(3): 358-362(in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.2006.03.017
    [32]
    曾爱花. 新疆511铀矿床7号采区U-Se-Re-Mo等元素分布特点[J]. 矿床地质, 2012, 31(1): 139-150. doi: 10.3969/j.issn.0258-7106.2012.01.012

    Zeng A H. Distribution characteristics of U-Se-Re-Mo and other elements in No. 7 mining area of Xinjiang 511 uranium deposit[J]. Deposit Geology, 2012, 31(1): 139-150(in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2012.01.012
    [33]
    Singer D A, Berger V I, Moring B C. Porphyry copper deposits of the world-database and grade and tonnage models[R/OL]. 2008: U.S. Geological Survey Open-File Report 2008-1155, 45 p., http://pubs.usgs.gov/of/2008/1155/.
    [34]
    Golden J, Mcmillan M, Downs R T, et al. Rhenium variations in molybdenite(MoS2): Evidence for progressive subsurface oxidation[J]. Earth and Planetary Sciences Letters, 2013, 366(2): 1-5. http://www.sciencedirect.com/science/article/pii/S0012821X13000514
    [35]
    Lavrov O B, Kuleshevich L V. The first finds of rhenium minerals in Karelia[J]. Doklady Earth Sciences, 2010, 432(1): 598-601. doi: 10.1134/S1028334X10050107
    [36]
    杨敏之. 含铼矿床的新成因类型及其地质找矿方向[J]. 地质地球化学, 1983(1): 13-14. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ198301003.htm

    Yang M Z. New genetic types of rhenium-bearing deposits and their geological prospecting direction[J]. Geology and Geochemistry, 1983(1): 13-14(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ198301003.htm
    [37]
    Bobrov A, Hurskiy D, Merkushyn I, et al. The first occurrence of native rhenium in natural geological systems[abs. ] [C/OL]. 33rd International Geological Congress, 6-14 August 2008, Oslo, Norway (abstracts): International Geological Congress, 33d, Oslo, Norway, 2008, accessed February 11, 2013, at http://www.cprm.gov.br/33IGC/1342433.html.
    [38]
    Seltmann R, Shatov V, Yakubchuk A. Mineral deposits database and thematic maps of Central Asia, scale 1: 1500000: Explanatory Notes to ArcView 3.2 and Mapinfo 7 GIS packages[R]. London: Centre for Russian and Central Asian Mineral Studies, NHM London, 2005.
    [39]
    王瑞江, 王登红, 李健康, 等. 稀有稀土稀散矿产资源及其开发利用[M]. 北京: 地质出版社, 2015.

    Wang R J, Wang D H, Li J K, et al. Rare rare earth mineral resources and their development and utilization[M]. Beijing: Geological Publishing House, 2015(in Chinese).
    [40]
    Sarp H, Bertran J, Deferne J, et al. A complex rhenium-rich titanium and iron oxide of the Crichtonitesenaite Group[J]. Neues Jahrbuch Fuer Mineralogie. Monatshefte, 1981, 10(1): 433-442. http://www.researchgate.net/publication/321865030_A_complex_rhenium-rich_titanium_and_iron_oxide_of_the_crichtonite-_senaite_group
    [41]
    Volborth A. Tarkian M, Stumpfl E F, et al. A survey of the Pd-Pt mineralization along the 35 km strike of the J.M. Reef, Stillwater complex, Montana[J]. Canadian Mineralogist, 1986, 24(1): 329-346. http://pubs.geoscienceworld.org/canmin/article-pdf/24/2/329/3446137/329.pdf
    [42]
    Poplavko E M, Marchukova I D, Zak C S. A rhenium mineral in the ores of the Dzhezkazgan deposits(In Russian)[J]. Doklady Akad. Nauk. SSSR, 1962, 146: 433-436.
    [43]
    Box S E, Syusyura B, Seltmann R, et al. Dzhezkazgan and associated sandstone copper deposits of the Chu-Sarysu Basin, Central Kazakhstan[J]. Economic Geology, 2017, 16: 303-328. http://www.researchgate.net/publication/345822783_Dzhezkazgan_and_Associated_Sandstone_Copper_Deposits_of_the_Chu-Sarysu_Basin_Central_Kazakhstan
    [44]
    戴婕, 杜谷, 徐金沙, 等. 丹巴杨柳坪地区铜镍硫化物矿床发现铼矿物[J]. 矿物学报, 2015, 35(1): 107-112. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201501017.htm

    Dai J, Du G, Xu J S, et al. Discovery of rhenium minerals from copper-nickel sulfide deposits in Yangliuping area of Danba[J]. Acta Mineralogy Sinica, 2015, 35(1): 107-112(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201501017.htm
    [45]
    Tarkian M, Housley R M, Volborth A, et al. Unnamed Re-Mo-Cu sulfide from Stillwater complex, and crystal chemistry of its synthetic equivalent spinel type (Cu, Fe)(Re, Mo)4S8[J]. European Journal of Mineralogy, 1991, 3(6): 977-982. doi: 10.1127/ejm/3/6/0977
    [46]
    Ekstrom M, Halenius U. A new rhenium-rich sulphide from two Swedish localities[J]. Neues Jahrbuch für Mineralogie-Monatshefte, 1982, 1982(1): 6-10. http://www.researchgate.net/publication/322437039_A_new_rhenium-rich_sulphide_from_two_Swedish_localities
    [47]
    Kojonen K K, Roberts A C, Iaomäki O P, et al. Tarkianite, (Cu, Fe) (Re, Mo)4S8: A new mineral species from the Hitura mine, Nivala, Finland[J]. The Canadian Mineralogist, 2004, 42(4): 539-544. http://www.researchgate.net/publication/237733371_Tarkianite_CuFeReMo4S-8_a_new_mineral_species_from_the_Hitura_Mine_Nivala_Finland
    [48]
    肖静珊, 李峰, 杨帆, 等. 云南澜沧老厂斑岩钼(铜)矿体中Re-Mo关系研究[J]. 地质科技情报, 2011, 30(2): 97-101. doi: 10.3969/j.issn.1000-7849.2011.02.016

    Xiao J S, Li F, Yang F, et al. Research on Re-Mo relationship in Laochang porphyry molybdenum (copper) orebody in Lancang, Yunnan[J]. Geological Science and Technology Information, 2011, 30(2): 97-101(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2011.02.016
    [49]
    Rathkopf C, Mazdab F, Barton I, et al. Grain-scale and deposit-scale heterogeneity of redistribution in molybdenite at the Bagdad porphyry Cu-Mo deposit, Arizona[J]. Journal of Geochemical Exploration, 2017, 178(5): 45-54. http://www.geo.arizona.edu/sites/www.geo.arizona.edu/files/Rathkopf2017BagdadReDist.pdf
    [50]
    McFall K, Roberts S, McDonald I. Rhenium enrichment in the Muratdere Cu-Mo (Au-Re) porphyry deposit, Turkey: Evidence from stable isotope analyses (δ34S, δ18O, δD) and laser ablation-inductively coupled plasma-mass spectrometry analysis of sulfides[J]. Economic Geology, 2019, 114(7): 1443-1466. doi: 10.5382/econgeo.4638
    [51]
    Ciobanu C L, Cook N J, Kelson C R, et al. Trace element heterogeneity in molybdenite fingerprints stages of mineralization[J]. Chemical Geology, 2013, 347(3): 175-189. http://www.sciencedirect.com/science/article/pii/S0009254113001253
    [52]
    刘英俊, 曹励明, 李兆麟, 等. 元素地球化学[M]. 北京: 地质出版社, 1984.

    Liu Y J, Cao L M, Li Z L, et al. Elemental geochemistry[M]. Beijing: Geological Publishing House, 1984(in Chinese).
    [53]
    涂光炽, 高振敏, 胡瑞忠, 等. 分散元素地球化学及其成矿机制[M]. 北京: 地质出版社, 2004.

    Tu G C, Gao Z M, Hu R Z, et al. Geochemistry of dispersed elements and their metallogenic mechanism[M]. Beijing: Geological Publishing House, 2004(in Chinese).
    [54]
    Ivanov V V, Poplavko E M, Corokhova V N. The geochemistry of rhenium[M]. International Geology Review, 1972, 14(1): 1-105.
    [55]
    定立, 赵元艺, 刘妍, 等. 江西永平铜矿外围护架山钻孔ZK725岩矿相学特征及意义[J]. 地质学报, 2013, 87(11): 1715-1730. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201311007.htm

    Ding L, Zhao Y Y, Liu Y, et al. Petrographic characteristics and significance of Borehole ZK725 in the outer Hujiashan of Yongping Copper Mine, Jiangxi Province[J]. Acta Geologica Sinica, 2013, 87(11): 1715-1730(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201311007.htm
    [56]
    Helz G R, Dolor M K. What regulates rhenium deposition in euxinic basins?[J]. Chemical Geology, 2012, 304/305(4): 131-141. http://www.sciencedirect.com/science/article/pii/S0009254112000824
    [57]
    黎彤, 倪守斌. 地球和地壳的化学元素丰度[M]. 北京: 地质出版社, 1990.

    Li T, Ni S B. The abundance of chemical elements in the Earth and the crust[M]. Beijing: Geological Publishing House, 1990(in Chinese).
    [58]
    Sun W D, Arculus R J, Bennett V C, et al. Evidence for rhenium enrichment in the mantle wedge from submarine arc-like volcanic glasses (Papua New Guinea)[J]. Geology, 2003, 31(10): 845-848. doi: 10.1130/G19832.1
    [59]
    Li Y. Chalcophile element partitioning between sulfide phases and hydrous mantle melt: Applications to mantle melting and the formation of ore deposits[J]. Journal of Asian Earth Sciences, 2014, 94(8): 77-93. http://www.sciencedirect.com/science/article/pii/S1367912014003526
    [60]
    Morgan J W, Lovering J F. Rhenium and osmium aboundances in some igneous and metamorphic rocks[J]. Earth and Planetary Science Letters, 1967, 3(3): 219-224. http://www.sciencedirect.com/science/article/pii/0012821X67900416
    [61]
    Morgan J W. Rhenium[C]//Marshall C P, Fairbridge R W. Encyclopedia of geochemistry. Kluwer: Academic Publishers, 1999.
    [62]
    Morris D F C, Fifield F W. Rhenium content of rocks[J]. Geochimica et Cosmochimica Acta, 1961, 25(3): 232-233. doi: 10.1016/0016-7037(61)90079-5
    [63]
    Hauri E H, Hart S R. Rhenium abundances and systematics in oceanic basalts[J]. Chemical Geology, 1997, 139(1): 185-205. http://www.sciencedirect.com/science/article/pii/S0009254197000351
    [64]
    Sun W D, Bennett V C, Kamenetsky V S. The mechanism of Re enrichment in arc magmas: Evidence from Lau Basin basaltic glasses and primitive melt inclusions[J]. Earth and Planetary Science Letters, 2004, 222(1): 101-114. doi: 10.1016/j.epsl.2004.02.011
    [65]
    Koide M, Hodge V F, Yang J S, et al. Some comparative marine chemistries of rhenium, gold silver and molybdenum[J]. Application Geochemistry, 1986, 1(6): 705-714. doi: 10.1016/0883-2927(86)90092-2
    [66]
    Ravizza G, Turekian K K, Hay B J. The geochemistry of rhenium and osmium in recent sediments from Black Sea[J]. Geochimica et Cosmochimica Acta, 1991, 55(12): 3741-3752. doi: 10.1016/0016-7037(91)90072-D
    [67]
    Colodner D, Sachs J, Ravizza G, et al. The geochemical cycle of rhenium: A reconnaissance[J]. Earth and Planetary Science Letters, 1993, 117(1/2): 205-221. http://www.sciencedirect.com/science/article/pii/0012821X9390127U
    [68]
    Colodner D, Edmond J, Boyle E. Rhenium in the Black Sea: Comparation with molybdenum and uranium[J]. Earth and Planetary Science Letters, 1995, 131(1/2): 1-15. http://www.sciencedirect.com/science/article/pii/0012821X9500010A
    [69]
    Crusius J, Calvert S E, Pedersen T F, et al. Rhenium and molybdenum enrichment in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition[J]. Earth and Planetary Science Letters, 1996, 145(1/4): 65-78. http://www.sciencedirect.com/science/article/pii/S0012821X9600204X
    [70]
    Sun W D, Bennett V C, Eggins S M, et al. Enhanced mantle-to-crust rhenium transfer in undegassed arc magmas[J]. Nature, 2003, 422: 294-297. doi: 10.1038/nature01482
    [71]
    Mao J W, Zhang Z, Zhang Z, et al. Re-Os isotopic dating of molybdenites in the Xiaoliugou (Mo) deposit in the northern Qilian Mountains and its geological significance[J]. Geochimica et Cosmochimica Acta, 1999, 63(11): 1815-1818. http://www.sciencedirect.com/science/article/pii/S0016703799001659
    [72]
    Li Y. Comparative geochemistry of rhenium in oxidized arc magmas and MORB and rhenium partitioning during magmatic differentiation[J]. Chemical Geology, 2014, 386(8): 101-114. http://www.sciencedirect.com/science/article/pii/S000925411400388X
    [73]
    Bernard A, Symonds R B, Rose W I. Volatile transport and deposition of Mo, W and Re in high temperature magmatic fluids[J]. Application Geochemistry, 1990, 5(3): 317-326. doi: 10.1016/0883-2927(90)90007-R
    [74]
    Xiong Y L, Wood S A, Kruseewski J. Hydrothermal transportand deposition of rhenium under subcritical conditions revisited[J]. Economic Geology, 2006, 101(2): 471-478. doi: 10.2113/gsecongeo.101.2.471
    [75]
    李娜, 张振芳, 王靓靓, 等. 战略性新兴产业若干关键矿产开发应用与展望[M]. 北京: 地质出版社, 2020.

    Li N, Zhang Z F, Wang L L, et al. Development, application and prospects of several key minerals in strategic emerging industries[M]. Beijing: Geological Publishing House, 2020(in Chinese).
    [76]
    黄诚, 张德会. 热液金矿成矿元素运移和沉淀机理研究综述[J]. 地质科技情报, 2013, 32(4): 162-170. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201304025.htm

    Huang C, Zhang D H. A review of the research on the migration and precipitation mechanism of metallogenic elements in hydrothermal gold deposits[J]. Geological Science and Technology Information, 2013, 32(4): 162-170(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201304025.htm
    [77]
    Morford J L, Martin W R, Carney C M. Rhenium geochemical cycling: Insights from continental margins[J]. Chemical Geology, 2012, 324/325(5): 73-86. http://www.sciencedirect.com/science/article/pii/S0009254111005031
    [78]
    Sheen A I, Kendall B, Reinhard C T, et al. A model for the oceanic mass balance of rhenium and implications for the extent of Proterozoic Ocean Anoxia[J]. Geochimica et Cosmochimica Acta, 2018, 227(1): 75-95. http://www.sciencedirect.com/science/article/pii/S0016703718300668
    [79]
    Crusius J, Thomson J. Comparative behavior of authigenic Re, U, and Mo during reoxidation and subsequent long-term burial in marine sediments[J]. Geochimica et Cosmochimica Acta, 2000, 64(13): 2233-2242. doi: 10.1016/S0016-7037(99)00433-0
    [80]
    Frondel J W, Wickman F E. Molybdenite polytypes in theory and occurrence: II. Some naturally-occurring polytypes of molybdenite[J]. American Mineralogist, 1970, 55(11/12): 1857-1875. http://www.researchgate.net/publication/284651884_Molybdenite_polytypes_in_theory_and_occurrence_II_Some_naturally-occurring_polytypes_of_molybdenite
    [81]
    Newberry R J J. Polytypism in molybdenite(II): Relationships between polytypism, ore deposition, alteration stages and rhenium contents[J]. American Mineralogist, 1979, 64(5): 768-775. http://ci.nii.ac.jp/naid/10030174540
    [82]
    Wang S M, Zhang J Z, He D W, et al. Sulfur-catalyzed phase transition in MoS2 under high pressure and temperature[J]. Journal of Physics and Chemistry of Solids, 2014, 75(1): 100-104. doi: 10.1016/j.jpcs.2013.09.001
    [83]
    Mccandless T E, Ruiz J R, Campbell A R. Rhenium behavior in molybdenite in hypogene and near-surface environments: Implications for Re-Os geochronometry[J]. Geochimica et Cosmochimica Acta, 1993, 57(4): 889-905. doi: 10.1016/0016-7037(93)90176-W
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1276) PDF Downloads(631) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return