Citation: | Zhou Chengjiao, Zhang Gangyang, Zhang Dingchuan. Types, element occurrence forms and enrichment mechanisms of rhenium metal deposits[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 115-130. doi: 10.19509/j.cnki.dzkq.2021.0431 |
[1] |
Vinogradov A P. Average concentration of chemical elements in the chief types of igneous rocks of the crust of the Earth[J]. Geochemistry, 1962, 7, 555-571.
|
[2] |
Stein H J, Markey R J, Morgan J W, et al. The remarkable Re-Os chronometer in molybdenite: How and why it works[J]. Terra Nova, 2001, 13(6): 479-486. doi: 10.1046/j.1365-3121.2001.00395.x
|
[3] |
Xiong Y L, Wood S A. Hydrothermal transport and deposition of rhenium under subcritical conditions (up to 200℃) in light of experimental studies[J]. Econimic Geology, 2001, 96(6): 1429-1444. http://www.researchgate.net/publication/284908569_Hydrothermal_Transport_and_Deposition_of_Rhenium_under_Subcritical_Conditionsup_to_200_C_in_Light_of_Experimental_Studies
|
[4] |
Xiong Y L, Wood S A. Experimental determination of the hydrothermal solubility of ReS2 and the Re-ReO2 buffer assemblage and transport of rhenium under supercritical conditions[J]. Geochemical Transactions, 2002, 3(1): 1-10. doi: 10.1186/1467-4866-3-1
|
[5] |
Berzina A N, Sotnikov V I, Economou-Eliopoulos M, et al. Distribution of rhenium in molybdenite from porphyry Cu-Mo and Mo-Cu deposits of Russia (Siberia) and Mongolia[J]. Ore Geology Review, 2005, 26(1/2): 91-113. http://www.sciencedirect.com/science/article/pii/S0169136804000496
|
[6] |
Voudouris P, Melfos V, Spry P, et al. Rhenium-rich molybdenite and rheniite in the Pagoni Rachi Mo-Cu-Te-Ag-Au prospect, northern Greece: Implications for the Re geochemistry of porphyry-style Cu-Mo and Mo mineralization[J]. Canadian Mineralogist, 2009, 47(5): 1013-1036. doi: 10.3749/canmin.47.5.1013
|
[7] |
Seo J H, Guillong M, Heinrich C A. Separation of molybdenum and copper in porphyry deposits: The roles of sulfur, redox, and pH in ore mineral deposition at Bingham Canyon[J]. Economic Geology, 2012, 107(2): 333-356. doi: 10.2113/econgeo.107.2.333
|
[8] |
John, D A, Taylor R D. By products of porphyry copper and molybdenum deposits[J]. Society of Economic Geologists, 2016, 18(7): 137-164. http://www.researchgate.net/publication/336543134_By-Products_of_Porphyry_Copper_and_Molybdenum_Deposits
|
[9] |
Babo J, Spandler C, Oliver N H S, et al. The high-grade Mo-Re Merlin deposit, Cloncurry district, Australia: Paragenesis and geochronology of hydrothermal alteration and ore formation[J]. Economic Geology, 2017, 112(2): 397-422. doi: 10.2113/econgeo.112.2.397
|
[10] |
U.S. Geological Survey(USGS). Mineral commodity summaries 2019: U.S. Geological Survey, 200P, https://doi.org/10.3133.70202434.
|
[11] |
John D A, Seal R R, SEAL I I, et al. Critical mineral resources of the United States: Economic and environmental geology and prospects for future supply: U.S. Geological Survey Professional Paper 1802, 2017, P1-P49, https://doi.org/10.3133/pp1802p.
|
[12] |
黄凡, 王登红, 王岩, 等. 中国铼矿成矿规律和找矿方向研究[J]. 地质学报, 2019, 93(6): 1253-1269. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201906007.htm
Huang F, Wang D H, Wang Y, et al. Research on the metallogenic law and prospecting direction of rhenium deposits in China[J]. Acta Geologica Sinica, 2019, 93(6): 1253-1269(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201906007.htm
|
[13] |
杨志明, 侯增谦, 周利敏, 等. 中国斑岩铜矿床中的主要关键矿产[J]. 科学通报, 2020, 65(33): 3653-3664. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202033003.htm
Yang Z M, Hou Z Q, Zhou L M, et al. Main key minerals in porphyry copper deposits in China[J]. Chinese Science Bulletin, 2020, 65(33): 3653-3664(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202033003.htm
|
[14] |
Tessalina S G, Yudovskaya M A, Chaplygin I V, et al. Sources of unique rhenium enrichment in fumaroles and sulphides at Kudryavy volcano[J]. Geochimica et Cosmochimica Acta, 2008, 72(2): 889-909. http://www.sciencedirect.com/science/article/pii/S0016703707006722
|
[15] |
Mathur R, Ruiz J R, Munizaga F M. Insights into Andean metallogenesis from the perspective of Re-Os analyses of sulfides[C]//Anon. SERNAGEOMIN, South American isotope conference, Pucon, Chile 2001, 4.
|
[16] |
周清, 姜耀辉, 廖世勇, 等. 德兴斑岩铜矿床研究新进展[J]. 地质论评, 2013, 59(5): 933-940. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201305015.htm
Zhou Q, Jiang Y H, Liao S Y, et al. New progress in the study of Dexing porphyry copper deposits[J]. Geological Review, 2013, 59(5): 933-940(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201305015.htm
|
[17] |
唐菊兴, 王友, 黎风佶, 等. 西藏谢通门县雄村铜金矿主要地质体形成的时限: 锆石U-Pb、辉钼矿Re-Os年龄的证据[J]. 矿床地质, 2010, 29(3): 461-475. doi: 10.3969/j.issn.0258-7106.2010.03.008
Tang J X, Wang Y, Li F J, et al. The time limit of the formation of the main geological bodies of the Xiongcun copper-gold deposit in Xietongmen County, Tibet: Evidence of zircon U-Pb and molybdenite Re-Os ages[J]. Deposit Geology, 2010, 29(3): 461-475(in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2010.03.008
|
[18] |
黄典豪. 东秦岭地区钼矿床中辉钼矿的铼含量及多型特征[J]. 岩石矿物学杂志, 1992, 11(1): 74-84. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW199201009.htm
Huang D H. Rhenium content and polytype characteristics of molybdenite in molybdenite deposits in Eastern Qinling area[J]. Journal of Rock and Mineralogy, 1992, 11(1): 74-84(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW199201009.htm
|
[19] |
李永峰, 王春秋, 白凤军, 等. 东秦岭钼矿Re-Os同位素年龄及其成矿动力学背景[J]. 矿产与地质, 2004, 18(6): 571-578. doi: 10.3969/j.issn.1001-5663.2004.06.014
Li Y F, Wang C Q, Bai F J, et al. Re-Os isotopic ages of the molybdenum deposit in the East Qinling and its mineralization dynamic background[J]. Mineral Resources and Geology, 2004, 18(6): 571-578(in Chinese with English abstract). doi: 10.3969/j.issn.1001-5663.2004.06.014
|
[20] |
孟祥金. 安徽沙坪沟斑岩钼矿锆石U-Pb和辉钼矿Re-Os年龄[J]. 地质学报, 2012, 86(3): 486-494. doi: 10.3969/j.issn.0001-5717.2012.03.010
Meng X J. Zircon U-Pb and molybdenite Re-Os ages of the porphyry molybdenum deposit in Shapinggou, Anhui[J]. Acta Geologica Sinica, 2012, 86(3): 486-494(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2012.03.010
|
[21] |
Aminzadeh B, Shahabpour J, Maghami M. Variation of rhenium contents in molybdenites from the Sar Cheshmeh porphyry Cu-Mo deposit in Iran[J]. Resource Geology, 2011, 61(3): 290-295. doi: 10.1111/j.1751-3928.2011.00165.x
|
[22] |
杨宗锋, 罗照华, 卢欣祥, 等. 关于辉钼矿中Re含量示踪来源的讨论[J]. 矿床地质, 2011, 30(4): 654-674. doi: 10.3969/j.issn.0258-7106.2011.04.006
Yang Z F, Luo Z H, Lu X X, et al. Discussion on the trace source of Re content in molybdenite[J]. Deposit Geology, 2011, 30(4): 654-674(in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2011.04.006
|
[23] |
刘芳, 宋史刚, 丁振举, 等. 甘肃小柳沟钨钼矿床Re-Os、Ar-Ar同位素定年及其成矿意义[J]. 地质科技情报, 2013, 32(6): 65-72. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201306012.htm
Liu F, Song S G, Ding Z J, et al. Re-Os and Ar-Ar isotopic dating of the Xiaoliugou tungsten-molybdenum deposit in Gansu and its metallogenic significance[J]. Geological Science and Technology Information, 2013, 32(6): 65-72(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201306012.htm
|
[24] |
谢桂青, 赵海杰, 赵财胜, 等. 鄂东南铜绿山矿田矽卡岩型铜铁金矿床的辉钼矿Re-Os同位素年龄及其地质意义[J]. 矿床地质, 2009, 28(3): 227-239. doi: 10.3969/j.issn.0258-7106.2009.03.001
Xie G Q, Zhao H J, Zhao C S, et al. The molybdenite Re-Os isotopic age of the skarn copper-iron-gold deposit in the Tonglushan ore field in Southeast Hubei and its geological significance[J]. Deposit Geology, 2009, 28(3): 227-239(in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2009.03.001
|
[25] |
黄典豪, 杜安道, 吴澄宇, 等. 华北地台钼(铜)矿床成矿年代学研究: 辉钼矿铼-锇年龄及其地质意义[J]. 矿床地质, 1996, 15(4): 365-373. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ604.008.htm
Huang D H, Du A D, Wu C Y, et al. Metallogenic chronology of molybdenum (copper) deposits on the North China platform: Molybdenite rhenium-osmium age and its geological significance[J]. Deposit Geology, 1996, 15(4): 365-373(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ604.008.htm
|
[26] |
代军治, 毛景文, 杜安道, 等. 辽西肖家营子钼(铁)矿床Re-Os年龄及其地质意义[J]. 地质学报, 2007, 81(7): 917-923. doi: 10.3321/j.issn:0001-5717.2007.07.006
Dai J Z, Mao J W, Du A D, et al. Re-Os age of the Xiaojiayingzi molybdenum (iron) deposit in western Liaoning and its geological significance[J]. Acta Geologica Sinica, 2007, 81(7): 917-923(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2007.07.006
|
[27] |
应立娟, 王登红, 唐菊兴, 等. 西藏甲玛铜多金属矿辉钼矿Re-Os定年及其成矿意义[J]. 地质学报, 2010, 84(8): 1166-1174. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201008010.htm
Ying L J, Wang D H, Tang J X, et al. Re-Os dating of molybdenite from Jiama copper polymetallic deposit in Tibet and its metallogenic significance[J]. Acta Geologica Sinica, 2010, 84(8): 1166-1174(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201008010.htm
|
[28] |
唐菊兴, 邓世林, 郑文宝, 等. 西藏墨竹工卡县甲玛铜多金属矿床勘查模型[J]. 矿床地质, 2011, 30(2): 179-196. doi: 10.3969/j.issn.0258-7106.2011.02.002
Tang J X, Deng S L, Zheng W B, et al. Exploration model of Jiama copper polymetallic deposit in Mozhugongka County, Tibet[J]. Deposit Geology, 2011, 30(2): 179-196(in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2011.02.002
|
[29] |
张苏坤, 郑有业, 张刚阳, 等. 西藏曲水县鸡公村石英脉型钼矿床成矿时代约束[J]. 矿床地质, 2013, 32(3): 187-194. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201303014.htm
Zhang S K, Zheng Y Y, Zhang G Y, et al. Mineralization age constraints of the quartz vein-type molybdenum deposit in Jigong Village, Qushui County, Tibet[J]. Deposit Geology, 2013, 32(3): 187-194(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201303014.htm
|
[30] |
王健, 魏启荣, 次琼, 等. 西藏鸡公村钼矿区中酸性岩体的时代、岩石地球化学特征及构造背景[J]. 地学前缘, 2018, 25(6): 153-164. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201806014.htm
Wang J, Wei Q R, Ci Q, et al. Age, petrogeochemical characteristics and tectonic background of the acidic rock mass in the molybdenum mining area of Jigongcun, Tibet[J]. Earth Science Frontiers, 2018, 25(6): 153-164(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201806014.htm
|
[31] |
王正其, 潘家永, 曹双林, 等. 层间氧化带分散元素铼与硒的超常富集机制探讨: 以伊犁盆地扎吉斯坦层间氧化带砂岩型铀矿床为例[J]. 地质论评, 2006, 52(3): 358-362. doi: 10.3321/j.issn:0371-5736.2006.03.017
Wang Z Q, Pan J Y, Cao S L, et al. Discussion on the extraordinary enrichment mechanism of the dispersed elements rhenium and selenium in the interlayer oxidation zone: Taking the interlayer oxidation zone sandstone-type uranium deposit in the Yili Basin as an example[J]. Geological Review, 2006, 52(3): 358-362(in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.2006.03.017
|
[32] |
曾爱花. 新疆511铀矿床7号采区U-Se-Re-Mo等元素分布特点[J]. 矿床地质, 2012, 31(1): 139-150. doi: 10.3969/j.issn.0258-7106.2012.01.012
Zeng A H. Distribution characteristics of U-Se-Re-Mo and other elements in No. 7 mining area of Xinjiang 511 uranium deposit[J]. Deposit Geology, 2012, 31(1): 139-150(in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2012.01.012
|
[33] |
Singer D A, Berger V I, Moring B C. Porphyry copper deposits of the world-database and grade and tonnage models[R/OL]. 2008: U.S. Geological Survey Open-File Report 2008-1155, 45 p., http://pubs.usgs.gov/of/2008/1155/.
|
[34] |
Golden J, Mcmillan M, Downs R T, et al. Rhenium variations in molybdenite(MoS2): Evidence for progressive subsurface oxidation[J]. Earth and Planetary Sciences Letters, 2013, 366(2): 1-5. http://www.sciencedirect.com/science/article/pii/S0012821X13000514
|
[35] |
Lavrov O B, Kuleshevich L V. The first finds of rhenium minerals in Karelia[J]. Doklady Earth Sciences, 2010, 432(1): 598-601. doi: 10.1134/S1028334X10050107
|
[36] |
杨敏之. 含铼矿床的新成因类型及其地质找矿方向[J]. 地质地球化学, 1983(1): 13-14. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ198301003.htm
Yang M Z. New genetic types of rhenium-bearing deposits and their geological prospecting direction[J]. Geology and Geochemistry, 1983(1): 13-14(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ198301003.htm
|
[37] |
Bobrov A, Hurskiy D, Merkushyn I, et al. The first occurrence of native rhenium in natural geological systems[abs. ] [C/OL]. 33rd International Geological Congress, 6-14 August 2008, Oslo, Norway (abstracts): International Geological Congress, 33d, Oslo, Norway, 2008, accessed February 11, 2013, at http://www.cprm.gov.br/33IGC/1342433.html.
|
[38] |
Seltmann R, Shatov V, Yakubchuk A. Mineral deposits database and thematic maps of Central Asia, scale 1: 1500000: Explanatory Notes to ArcView 3.2 and Mapinfo 7 GIS packages[R]. London: Centre for Russian and Central Asian Mineral Studies, NHM London, 2005.
|
[39] |
王瑞江, 王登红, 李健康, 等. 稀有稀土稀散矿产资源及其开发利用[M]. 北京: 地质出版社, 2015.
Wang R J, Wang D H, Li J K, et al. Rare rare earth mineral resources and their development and utilization[M]. Beijing: Geological Publishing House, 2015(in Chinese).
|
[40] |
Sarp H, Bertran J, Deferne J, et al. A complex rhenium-rich titanium and iron oxide of the Crichtonitesenaite Group[J]. Neues Jahrbuch Fuer Mineralogie. Monatshefte, 1981, 10(1): 433-442. http://www.researchgate.net/publication/321865030_A_complex_rhenium-rich_titanium_and_iron_oxide_of_the_crichtonite-_senaite_group
|
[41] |
Volborth A. Tarkian M, Stumpfl E F, et al. A survey of the Pd-Pt mineralization along the 35 km strike of the J.M. Reef, Stillwater complex, Montana[J]. Canadian Mineralogist, 1986, 24(1): 329-346. http://pubs.geoscienceworld.org/canmin/article-pdf/24/2/329/3446137/329.pdf
|
[42] |
Poplavko E M, Marchukova I D, Zak C S. A rhenium mineral in the ores of the Dzhezkazgan deposits(In Russian)[J]. Doklady Akad. Nauk. SSSR, 1962, 146: 433-436.
|
[43] |
Box S E, Syusyura B, Seltmann R, et al. Dzhezkazgan and associated sandstone copper deposits of the Chu-Sarysu Basin, Central Kazakhstan[J]. Economic Geology, 2017, 16: 303-328. http://www.researchgate.net/publication/345822783_Dzhezkazgan_and_Associated_Sandstone_Copper_Deposits_of_the_Chu-Sarysu_Basin_Central_Kazakhstan
|
[44] |
戴婕, 杜谷, 徐金沙, 等. 丹巴杨柳坪地区铜镍硫化物矿床发现铼矿物[J]. 矿物学报, 2015, 35(1): 107-112. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201501017.htm
Dai J, Du G, Xu J S, et al. Discovery of rhenium minerals from copper-nickel sulfide deposits in Yangliuping area of Danba[J]. Acta Mineralogy Sinica, 2015, 35(1): 107-112(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201501017.htm
|
[45] |
Tarkian M, Housley R M, Volborth A, et al. Unnamed Re-Mo-Cu sulfide from Stillwater complex, and crystal chemistry of its synthetic equivalent spinel type (Cu, Fe)(Re, Mo)4S8[J]. European Journal of Mineralogy, 1991, 3(6): 977-982. doi: 10.1127/ejm/3/6/0977
|
[46] |
Ekstrom M, Halenius U. A new rhenium-rich sulphide from two Swedish localities[J]. Neues Jahrbuch für Mineralogie-Monatshefte, 1982, 1982(1): 6-10. http://www.researchgate.net/publication/322437039_A_new_rhenium-rich_sulphide_from_two_Swedish_localities
|
[47] |
Kojonen K K, Roberts A C, Iaomäki O P, et al. Tarkianite, (Cu, Fe) (Re, Mo)4S8: A new mineral species from the Hitura mine, Nivala, Finland[J]. The Canadian Mineralogist, 2004, 42(4): 539-544. http://www.researchgate.net/publication/237733371_Tarkianite_CuFeReMo4S-8_a_new_mineral_species_from_the_Hitura_Mine_Nivala_Finland
|
[48] |
肖静珊, 李峰, 杨帆, 等. 云南澜沧老厂斑岩钼(铜)矿体中Re-Mo关系研究[J]. 地质科技情报, 2011, 30(2): 97-101. doi: 10.3969/j.issn.1000-7849.2011.02.016
Xiao J S, Li F, Yang F, et al. Research on Re-Mo relationship in Laochang porphyry molybdenum (copper) orebody in Lancang, Yunnan[J]. Geological Science and Technology Information, 2011, 30(2): 97-101(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2011.02.016
|
[49] |
Rathkopf C, Mazdab F, Barton I, et al. Grain-scale and deposit-scale heterogeneity of redistribution in molybdenite at the Bagdad porphyry Cu-Mo deposit, Arizona[J]. Journal of Geochemical Exploration, 2017, 178(5): 45-54. http://www.geo.arizona.edu/sites/www.geo.arizona.edu/files/Rathkopf2017BagdadReDist.pdf
|
[50] |
McFall K, Roberts S, McDonald I. Rhenium enrichment in the Muratdere Cu-Mo (Au-Re) porphyry deposit, Turkey: Evidence from stable isotope analyses (δ34S, δ18O, δD) and laser ablation-inductively coupled plasma-mass spectrometry analysis of sulfides[J]. Economic Geology, 2019, 114(7): 1443-1466. doi: 10.5382/econgeo.4638
|
[51] |
Ciobanu C L, Cook N J, Kelson C R, et al. Trace element heterogeneity in molybdenite fingerprints stages of mineralization[J]. Chemical Geology, 2013, 347(3): 175-189. http://www.sciencedirect.com/science/article/pii/S0009254113001253
|
[52] |
刘英俊, 曹励明, 李兆麟, 等. 元素地球化学[M]. 北京: 地质出版社, 1984.
Liu Y J, Cao L M, Li Z L, et al. Elemental geochemistry[M]. Beijing: Geological Publishing House, 1984(in Chinese).
|
[53] |
涂光炽, 高振敏, 胡瑞忠, 等. 分散元素地球化学及其成矿机制[M]. 北京: 地质出版社, 2004.
Tu G C, Gao Z M, Hu R Z, et al. Geochemistry of dispersed elements and their metallogenic mechanism[M]. Beijing: Geological Publishing House, 2004(in Chinese).
|
[54] |
Ivanov V V, Poplavko E M, Corokhova V N. The geochemistry of rhenium[M]. International Geology Review, 1972, 14(1): 1-105.
|
[55] |
定立, 赵元艺, 刘妍, 等. 江西永平铜矿外围护架山钻孔ZK725岩矿相学特征及意义[J]. 地质学报, 2013, 87(11): 1715-1730. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201311007.htm
Ding L, Zhao Y Y, Liu Y, et al. Petrographic characteristics and significance of Borehole ZK725 in the outer Hujiashan of Yongping Copper Mine, Jiangxi Province[J]. Acta Geologica Sinica, 2013, 87(11): 1715-1730(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201311007.htm
|
[56] |
Helz G R, Dolor M K. What regulates rhenium deposition in euxinic basins?[J]. Chemical Geology, 2012, 304/305(4): 131-141. http://www.sciencedirect.com/science/article/pii/S0009254112000824
|
[57] |
黎彤, 倪守斌. 地球和地壳的化学元素丰度[M]. 北京: 地质出版社, 1990.
Li T, Ni S B. The abundance of chemical elements in the Earth and the crust[M]. Beijing: Geological Publishing House, 1990(in Chinese).
|
[58] |
Sun W D, Arculus R J, Bennett V C, et al. Evidence for rhenium enrichment in the mantle wedge from submarine arc-like volcanic glasses (Papua New Guinea)[J]. Geology, 2003, 31(10): 845-848. doi: 10.1130/G19832.1
|
[59] |
Li Y. Chalcophile element partitioning between sulfide phases and hydrous mantle melt: Applications to mantle melting and the formation of ore deposits[J]. Journal of Asian Earth Sciences, 2014, 94(8): 77-93. http://www.sciencedirect.com/science/article/pii/S1367912014003526
|
[60] |
Morgan J W, Lovering J F. Rhenium and osmium aboundances in some igneous and metamorphic rocks[J]. Earth and Planetary Science Letters, 1967, 3(3): 219-224. http://www.sciencedirect.com/science/article/pii/0012821X67900416
|
[61] |
Morgan J W. Rhenium[C]//Marshall C P, Fairbridge R W. Encyclopedia of geochemistry. Kluwer: Academic Publishers, 1999.
|
[62] |
Morris D F C, Fifield F W. Rhenium content of rocks[J]. Geochimica et Cosmochimica Acta, 1961, 25(3): 232-233. doi: 10.1016/0016-7037(61)90079-5
|
[63] |
Hauri E H, Hart S R. Rhenium abundances and systematics in oceanic basalts[J]. Chemical Geology, 1997, 139(1): 185-205. http://www.sciencedirect.com/science/article/pii/S0009254197000351
|
[64] |
Sun W D, Bennett V C, Kamenetsky V S. The mechanism of Re enrichment in arc magmas: Evidence from Lau Basin basaltic glasses and primitive melt inclusions[J]. Earth and Planetary Science Letters, 2004, 222(1): 101-114. doi: 10.1016/j.epsl.2004.02.011
|
[65] |
Koide M, Hodge V F, Yang J S, et al. Some comparative marine chemistries of rhenium, gold silver and molybdenum[J]. Application Geochemistry, 1986, 1(6): 705-714. doi: 10.1016/0883-2927(86)90092-2
|
[66] |
Ravizza G, Turekian K K, Hay B J. The geochemistry of rhenium and osmium in recent sediments from Black Sea[J]. Geochimica et Cosmochimica Acta, 1991, 55(12): 3741-3752. doi: 10.1016/0016-7037(91)90072-D
|
[67] |
Colodner D, Sachs J, Ravizza G, et al. The geochemical cycle of rhenium: A reconnaissance[J]. Earth and Planetary Science Letters, 1993, 117(1/2): 205-221. http://www.sciencedirect.com/science/article/pii/0012821X9390127U
|
[68] |
Colodner D, Edmond J, Boyle E. Rhenium in the Black Sea: Comparation with molybdenum and uranium[J]. Earth and Planetary Science Letters, 1995, 131(1/2): 1-15. http://www.sciencedirect.com/science/article/pii/0012821X9500010A
|
[69] |
Crusius J, Calvert S E, Pedersen T F, et al. Rhenium and molybdenum enrichment in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition[J]. Earth and Planetary Science Letters, 1996, 145(1/4): 65-78. http://www.sciencedirect.com/science/article/pii/S0012821X9600204X
|
[70] |
Sun W D, Bennett V C, Eggins S M, et al. Enhanced mantle-to-crust rhenium transfer in undegassed arc magmas[J]. Nature, 2003, 422: 294-297. doi: 10.1038/nature01482
|
[71] |
Mao J W, Zhang Z, Zhang Z, et al. Re-Os isotopic dating of molybdenites in the Xiaoliugou (Mo) deposit in the northern Qilian Mountains and its geological significance[J]. Geochimica et Cosmochimica Acta, 1999, 63(11): 1815-1818. http://www.sciencedirect.com/science/article/pii/S0016703799001659
|
[72] |
Li Y. Comparative geochemistry of rhenium in oxidized arc magmas and MORB and rhenium partitioning during magmatic differentiation[J]. Chemical Geology, 2014, 386(8): 101-114. http://www.sciencedirect.com/science/article/pii/S000925411400388X
|
[73] |
Bernard A, Symonds R B, Rose W I. Volatile transport and deposition of Mo, W and Re in high temperature magmatic fluids[J]. Application Geochemistry, 1990, 5(3): 317-326. doi: 10.1016/0883-2927(90)90007-R
|
[74] |
Xiong Y L, Wood S A, Kruseewski J. Hydrothermal transportand deposition of rhenium under subcritical conditions revisited[J]. Economic Geology, 2006, 101(2): 471-478. doi: 10.2113/gsecongeo.101.2.471
|
[75] |
李娜, 张振芳, 王靓靓, 等. 战略性新兴产业若干关键矿产开发应用与展望[M]. 北京: 地质出版社, 2020.
Li N, Zhang Z F, Wang L L, et al. Development, application and prospects of several key minerals in strategic emerging industries[M]. Beijing: Geological Publishing House, 2020(in Chinese).
|
[76] |
黄诚, 张德会. 热液金矿成矿元素运移和沉淀机理研究综述[J]. 地质科技情报, 2013, 32(4): 162-170. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201304025.htm
Huang C, Zhang D H. A review of the research on the migration and precipitation mechanism of metallogenic elements in hydrothermal gold deposits[J]. Geological Science and Technology Information, 2013, 32(4): 162-170(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201304025.htm
|
[77] |
Morford J L, Martin W R, Carney C M. Rhenium geochemical cycling: Insights from continental margins[J]. Chemical Geology, 2012, 324/325(5): 73-86. http://www.sciencedirect.com/science/article/pii/S0009254111005031
|
[78] |
Sheen A I, Kendall B, Reinhard C T, et al. A model for the oceanic mass balance of rhenium and implications for the extent of Proterozoic Ocean Anoxia[J]. Geochimica et Cosmochimica Acta, 2018, 227(1): 75-95. http://www.sciencedirect.com/science/article/pii/S0016703718300668
|
[79] |
Crusius J, Thomson J. Comparative behavior of authigenic Re, U, and Mo during reoxidation and subsequent long-term burial in marine sediments[J]. Geochimica et Cosmochimica Acta, 2000, 64(13): 2233-2242. doi: 10.1016/S0016-7037(99)00433-0
|
[80] |
Frondel J W, Wickman F E. Molybdenite polytypes in theory and occurrence: II. Some naturally-occurring polytypes of molybdenite[J]. American Mineralogist, 1970, 55(11/12): 1857-1875. http://www.researchgate.net/publication/284651884_Molybdenite_polytypes_in_theory_and_occurrence_II_Some_naturally-occurring_polytypes_of_molybdenite
|
[81] |
Newberry R J J. Polytypism in molybdenite(II): Relationships between polytypism, ore deposition, alteration stages and rhenium contents[J]. American Mineralogist, 1979, 64(5): 768-775. http://ci.nii.ac.jp/naid/10030174540
|
[82] |
Wang S M, Zhang J Z, He D W, et al. Sulfur-catalyzed phase transition in MoS2 under high pressure and temperature[J]. Journal of Physics and Chemistry of Solids, 2014, 75(1): 100-104. doi: 10.1016/j.jpcs.2013.09.001
|
[83] |
Mccandless T E, Ruiz J R, Campbell A R. Rhenium behavior in molybdenite in hypogene and near-surface environments: Implications for Re-Os geochronometry[J]. Geochimica et Cosmochimica Acta, 1993, 57(4): 889-905. doi: 10.1016/0016-7037(93)90176-W
|