Volume 40 Issue 6
Nov.  2021
Turn off MathJax
Article Contents
Peng Shuangqi, Ke Ling, Zheng Ti, Xu Jizhong. Particle distribution characteristics of rock avalanche and the interaction between rock avalanche and houses based on image recognition[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 226-235. doi: 10.19509/j.cnki.dzkq.2021.0622
Citation: Peng Shuangqi, Ke Ling, Zheng Ti, Xu Jizhong. Particle distribution characteristics of rock avalanche and the interaction between rock avalanche and houses based on image recognition[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 226-235. doi: 10.19509/j.cnki.dzkq.2021.0622

Particle distribution characteristics of rock avalanche and the interaction between rock avalanche and houses based on image recognition

doi: 10.19509/j.cnki.dzkq.2021.0622
  • Received Date: 20 Jan 2021
  • Due to the high concealment, short-lived time and low predictability of the rock avalanche, it is difficult to visually observe the process of it. In order to study the dynamic characteristics and the catastrophicto houses of rock avalanche, this paper analyzes the rock avalanche congeries and its particle size distribution.Taking the rock avalanche in Pusa Village as an example, this paper uses the PCAS system to identify congeries particles by image.And through the dimensional analysis method, the quantitative relationship between the congeries of particles and the damage of the building is analyzed.The author found that: compared with on-site screening statistics, the data obtained by the method of image recognition of congeries particles is more comprehensive and detailed, and can save a lot of manpower and material resources.In addition, the interaction between the house and the rock avalanche is explored, and it is found that the house has the effect of "blocking coarse and fine discharge" on the rock avalanche particles. At the same time, using the particle size data obtained by image recognition to derive the discrimination formula for building damage, the discriminating effect is good, laying the foundation for follow-up research.

     

  • loading
  • [1]
    黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 2007, 26(3): 433-454. doi: 10.3321/j.issn:1000-6915.2007.03.001

    Huang R Q. Large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3): 433-454(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2007.03.001
    [2]
    许强, 黄润秋, 殷跃平, 等. 2009年6·5重庆武隆鸡尾山崩滑灾害基本特征与成因机理初步研究[J]. 工程地质学报, 2009, 17(4): 433-444. doi: 10.3969/j.issn.1004-9665.2009.04.001

    Xu Q, Huang R Q, Ying Y P, et al. The Jiweishan landslide of June 5, 2009 in Wulong, Chongqing: Characteristics and failure mechanism[J]. Journal of Engineering Geology, 2009, 17(4): 433-444(in Chinese with English abstract). doi: 10.3969/j.issn.1004-9665.2009.04.001
    [3]
    许强, 李为乐, 董秀军, 等. 四川茂县叠溪镇新磨村滑坡特征与成因机制初步研究[J]. 岩石力学与工程学报, 2017, 36(11): 2612-2628. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201711002.htm

    Xu Q, Li W L, Dong X J et al. The Xinmocun landslide on June 24, 2017 in Maoxian, Sichuan: Characteristics and failure mechanism[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(11): 2612-2628(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201711002.htm
    [4]
    彭双麒, 许强, 郑光, 等. 碎屑流堆积物粒度分布与运动特性的关系: 以贵州纳雍普洒村崩塌为例[J]. 水文地质工程地质, 2018, 45(4): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201804019.htm

    Peng S Q, Xu Q, Zheng G, et al. Realationship between particle size distribution and movement characteristics of rock avalanche deposits in Nayongpusa Village, Guizhou Province[J] Hydrogeology & Engineering Geology, 2018, 45(4): 129-136(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201804019.htm
    [5]
    郑光, 许强, 巨袁臻, 等. 2017年8月28日贵州纳雍县张家湾镇普洒村崩塌特征与成因机理研究[J]. 工程地质学报, 2018, 26(1): 223-240. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201801023.htm

    Zheng G, Xu Q, Ju Y Z, et al. The Pusacun rock avalanche on August 28, 2017 in Zhangjiawan Nayongxian, Guizhou: Characteristics and failure mechanism[J]. Journal of Engineering Geology, 2018, 26(1): 223-240(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201801023.htm
    [6]
    彭双麒, 许强, 郑光, 等. 白格滑坡-碎屑流堆积体颗粒识别与分析[J]. 水利水电技术, 2020, 51(2): 144-154. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ202002017.htm

    Peng S Q, Xu Q, Zheng G, et al. Recognition and analysis of deposit body grain of Baige Landslide-Debris Flow[J] Water Resources and Hydropower Engineering, 2020, 51(2): 144-154(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ202002017.htm
    [7]
    Li H J, Xu Q, He Y. et al. Prediction of landslide displacement with an ensemble-based extreme learning machine and copula models[J]. Landslides, 2018, 15(10): 2047-2059. doi: 10.1007/s10346-018-1020-2
    [8]
    覃瀚萱, 桂蕾, 余玉婷, 等. 基于滑坡灾害预警分级的应急处置措施[J]. 地质科技情报, 2021, 40(4): 187-195. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202104018.htm

    Qin H X, Gui L, Yu Y T, et al. Emergency measures based on early warning classification of landslide[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 187-195(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202104018.htm
    [9]
    吴益平, 唐辉明, 殷坤龙. 物元模型在滑坡灾害风险预测中的应用[J]. 地质科技情报, 2003, 22(4): 96-100. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200304018.htm

    Wu Y P, Tang H M, Yin K L. Application of matter-element model in landslide hazard risk assessment[J]. Geological Science and Technology Information, 2003, 22(4): 96-100(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200304018.htm
    [10]
    Yang Q, Cai F, Su Z, et al. Numerical simulation of granular flows in a Large Flume using discontinuous deformation analysis[J]. Rock Mechanics and Rock Engineering, 2014, 47(6): 2299-2306. doi: 10.1007/s00603-013-0489-1
    [11]
    Yuan R M, Tang C I, Hu J C, et al. Mechanism of the Donghekou landslide triggered by the 2008 Wenchuan earthquake revealed by discrete element modeling[J]. Natural Hazards and Earth System Sciences, 2014, 14(6): 1195-1205. http://www.onacademic.com/detail/journal_1000040545889410_b1b1.html
    [12]
    Yu X, Chen X. Variational laws of debris flow impact force on the Check Dam surface based on orthogonal experiment design[J]. Geotechnical and Geological Engineering, 2017, 35(6): 2511-2522. doi: 10.1007/s10706-017-0258-0
    [13]
    毕钰璋, 何思明, 王东坡, 等. 碎屑流冲击下的桥墩动力响应特征分析[J]. 中国地质灾害与防治学报, 2017, 28(4): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201704004.htm

    Bi Y Z, He S M, Wang D P, et al. Discrete-element investigation of rock avalanches impact on the bridge pier[J]. The Chinese Journal of Geological Hazard and Control, 2017, 28(4): 16-21(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201704004.htm
    [14]
    Jiang Y J, Zhao Y, Towhata I, et al. Influence of particle characteristics on impact event of dry granular flow[J]. Powder Technology, 2015, 270(A): 53-67. http://www.researchgate.net/profile/Yuan-Jun_Jiang/publication/267100618_Influence_of_particle_characteristics_on_impact_event_of_dry_granular_flow/links/54f5893f0cf2f28c1364e99c.pdf
    [15]
    Jiang Y J, Towhata I. Experimental study of dry granular flow and impact behavior against a rigid retaining wall[J]. Rock Mechanics and Rock Engineering, 2013, 46(4): 713-729. doi: 10.1007/s00603-012-0293-3
    [16]
    Adel A, Stéphane L, Thierry F. Dry granular avalanche impact force on a rigid wall: Analytic shock solution versus discrete element simulations[J]. Physical Review E, 2018, 97(5): 052903. doi: 10.1103/PhysRevE.97.052903
    [17]
    赵辉. 粗颗粒堆积体塌滑蔓延试验与遮挡措施研究[D]. 北京: 北京交通大学, 2018.

    Zhao H. Experimental studies on sliding and scattering characteristics of coarse-aggregate soil mass and blocking measures of sliding soil mass[D]. Beijing: Beijing Jiaotong University, 2018(in Chinese with English abstract).
    [18]
    王品, 徐则民. 头寨大型高速远程滑坡碎屑流堆积体的粒度组成[J]. 山地学报, 2013, 31(6): 745-752. doi: 10.3969/j.issn.1008-2786.2013.06.014

    Wang P, Xu Z M. The grain size composition of Touzhai rock-avalanche deposits[J]. Journal of Mountain Science, 2013, 31(6): 745-752(in Chinese with English abstract). doi: 10.3969/j.issn.1008-2786.2013.06.014
    [19]
    Zhang L M, Xu Y, Huang R Q, et al. Particle flow and segregation in a giant landslide event triggered by the 2008 Wenchuan earthquake, Sichuan, China[J]. Natural Hazards & Earth System Sciences, 2011, 11(4): 1153-1162. http://www.onacademic.com/detail/journal_1000040545869710_3773.html
    [20]
    徐丽坤, 刘晓东, 向小翠. 基于深度信念网络的遥感影像识别与分类[J]. 地质科技情报, 2017, 36(4): 244-249. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201704032.htm

    Xu L K, Liu X D, Xiang X C. Recognition and classification for remote sensing image based on depth belief network[J]. Geological Science and Technology Information, 2017, 36(4): 244-249(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201704032.htm
    [21]
    Hitzl A P, Jörres R A, Heinemann F, et al. Aerial photography collected with a multirotor drone reveals impact of Eurasian beaver reintroduction on ecosystem structure[J]. Journal of Unmanned Vehicle Systems, 2015, 3(3): 123-130. doi: 10.1139/juvs-2015-0005
    [22]
    Xu Q, Li H J, He Y, et al. Comparison of data-driven models of loess landslide runout distance estimation[J]. Bulletin of Engineering Geology and the Environment, 2019, 78: 1281-1294. doi: 10.1007/s10064-017-1176-3
    [23]
    Jiao K, Yao S, Liu C, et al. The characterization and quantitative analysis of nanopores in unconventional gas reservoirs utilizing FESEM-FIB and image processing: An example from the lower Silurian Longmaxi Shale, upper Yangtze region, China[J]. International Journal of Coal Geology, 2014, 128/129(3): 1-11. http://www.sciencedirect.com/science/article/pii/S0166516214000664
    [24]
    Liu Y, Wu L. Geological disaster recognition on optical remote sensing images using deep learning[J]. Procedia Computer Science, 2016, 91: 566-575. doi: 10.1016/j.procs.2016.07.144
    [25]
    彭双麒, 许强, 李骅锦, 等. 基于高精度图像识别的堆积体粒径分析[J]. 工程地质学报, 2019, 27(6): 1290-1301. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201906011.htm

    Peng S Q, Xu Q, Li H J, et al. Grain size distribution analysis of landslide deposits with reliable image identification[J]. Journal of Engineering Geology, 2019, 27(6): 1290-1301(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201906011.htm
    [26]
    Liu C, Shi B, Zhou J. Quantification and characterization of microporosity by image processing, geometric measurement and statistical methods: Application on SEM images of clay materials[J]. Applied Clay Science, 2011, 54(1): 97-106. doi: 10.1016/j.clay.2011.07.022
    [27]
    Lin Q, Yan J, Zhou J, et al. Microstructure study on intact clay behavior subjected to cyclic principal stress rotation[J]. Procedia Engineering, 2016, 143: 991-998. doi: 10.1016/j.proeng.2016.06.088
    [28]
    Liu C, Pollard D D, Aydin A, et al. Mechanism of formation of wiggly compaction bands in porous sandstone: Observations and conceptual model[J]. Journal of Geophysical Research, 2015, 120(12): 8138-8152. doi: 10.1002/2015JB012374
    [29]
    彭双麒. 滑坡-碎屑流堆积体粒度分布研究[D]. 成都: 成都理工大学, 2020.

    Peng S Q. The study for grain size distribution of rock avalanche deposit[D]. Chengdu: Chengdu University of Technology, 2020 (in Chinese with English abstract).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(240) PDF Downloads(194) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return