Citation: | Xu Han, Cheng Danyi, Xu Yonghua, Yao Kongxuan, Qiu Feng, Wu Xiaoming, Lin Penghao. Stratigraphic lithology identification based on no-dig mud property detection system and weakly-supervised learning[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 293-301. doi: 10.19509/j.cnki.dzkq.2021.0629 |
[1] |
颜纯文. 我国非开挖行业现状与展望[J]. 探矿工程: 岩土钻掘工程, 2010, 37(10): 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-TKGC201010021.htm
Yan C W. Current status of trenchless industry in China and the prospect[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2010, 37(10): 56-60(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TKGC201010021.htm
|
[2] |
江文, 蒋宏业, 姚安林. 水平定向钻穿越施工的失效可能性研究[J]. 中国安全生产科学技术, 2015, 11(5): 111-116. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201505021.htm
Jiang W, Jiang H Y, Yao A L. Study on failure possibility of crossing construction by horizontal directional drilling[J]. Journal of Safety Science and Technology, 2015, 11(5): 111-116(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201505021.htm
|
[3] |
谷宇峰, 张道勇, 鲍志东, 等. 利用GS-LightGBM机器学习模型识别致密砂岩地层岩性[J]. 地质科技通报, 2021, 40(4): 224-234. doi: 10.19509/j.cnki.dzkq.2021.0416
Gu Y F, Zhang D Y, Bao Z D, et al. Lithology prediction of tight sandstone formation using GS-LightGBM hybrid machine learning model[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 224-234(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0416
|
[4] |
张幼振, 张宁, 邵俊杰, 等. 基于钻进参数聚类的含煤地层岩性模糊识别[J]. 煤炭学报, 2019, 44(8): 2328-2335. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908007.htm
Zhang Y Z, Zhang N, Shao J J, et al. Fuzzy identification of coal-bearing strata lithology based on drilling parameter clustering[J]. Journal of Coal Industry, 2019, 44(8): 2328-2335(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908007.htm
|
[5] |
翟淑花, 高谦. 基于进化算法的岩体参数智能识别[J]. 煤炭学报, 2011, 36(1): 34-38. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201101009.htm
Zhai S H, Gao Q. Intelligent identification of rock mass parameters based on evolutionary algorithm[J]. Journal of Coal Society, 2011, 36(1): 34-38(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201101009.htm
|
[6] |
Sair K, Jamai R, Ali N. Review of ground characterization by using instrumented drills for underground mining and construction[J]. Rock Mechanics and Rock Engineering, 2016, 49(2): 585-602. doi: 10.1007/s00603-015-0756-4
|
[7] |
刘彦锋, 张文彪, 段太忠, 等. 深度学习油气藏地质建模研究进展[J]. 地质科技通报, 2021, 40(4): 235-241. doi: 10.19509/j.cnki.dzkq.2021.0417
Liu Y F, Zhang W B, Duan T Z, et al. Progress of deep learning in oil and gas reservoir geological modeling[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 235-241(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0417
|
[8] |
房昱纬, 吴振君, 盛谦, 等. 基于超前钻探测试的隧道地层智能识别方法[J]. 岩土力学, 2020, 41(7): 2494-2503. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202007036.htm
Fang Y W, Wu Z J, Sheng Q, et al. Intelligent recognition of tunnel stratum based on advanced drilling tests[J]. Geotechnical Mechanics, 2020, 41(7): 2494-2503(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202007036.htm
|
[9] |
乌效鸣, 胡郁乐, 贺冰新, 等. 钻井液与岩土工程浆液[M]. 武汉: 中国地质大学出版社, 2002.
Wu X M, Hu Y L, He B X, et al. Drilling fluid and geotechnical slurry[M]. Wuhan: China University of Geosciences Press, 2002(in Chinese).
|
[10] |
鄢捷年, 李健鹰. 钻井液工艺学[M]. 北京: 中国石油大学出版社, 2016.
Yan J N, Li J Y. Drilling fluid technology[M]. Beijing: China University of Petroleum Press, 2016(in Chinese).
|
[11] |
刘钊, 杜威, 闫冬梅, 等. 基于K近邻算法和支持向量回归组合的短时交通流预测[J]. 公路交通科技, 2017, 34(5): 122-128, 158. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201705017.htm
Liu Z, Du W, Yan D M, et al. Short-term traffic flow forecast based on combination of K-nearest neighbor algorithm and support vector regression[J]. Journal of Highway and Transportation Research and Development, 2017, 34(5): 122-128, 158(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201705017.htm
|
[12] |
Feng K, González A, Casero M. A KNN algorithm for locating and quantifying stiffness loss in a bridge from the forced vibration due to a truck crossing at low speed[J]. Mechanical Systems and Signal Processing, 2021, DOI: 10.1016/J.YMSSP.2020.107599.
|
[13] |
Tsalera E, Papadakis A, Samarakou M. Monitoring, profiling and classification of urban environmental noise using sound characteristics and the KNN algorithm[J]. Energy Reports, 2020, 6(S6): 223-230. http://www.sciencedirect.com/science/article/pii/S2352484720313007
|
[14] |
Giulio V, Marco N. Enhancement of a short-term forecasting method based on clustering and kNN: Application to an industrial facility powered by a cogenerator[J]. Energies, 2019, 12(23): 4407-4423. http://www.researchgate.net/publication/337407243_Enhancement_of_a_Short-Term_Forecasting_Method_Based_on_Clustering_and_kNN_Application_to_an_Industrial_Facility_Powered_by_a_Cogenerator
|
[15] |
Vapnik V N. The nature of statistical learning theory[M]. New York: Springer Verlag, 2000.
|
[16] |
Ahmadi M A, Chen Z. Comparison of machine learning methods for estimating permeability and porosity of oil reservoirs via petro-physical logs[J]. Petroleum, 5(3): 271-284. http://qikan.cqvip.com/Qikan/Article/Detail?id=7103867149
|
[17] |
周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.
Zhou Z H. Machine learning[M]. Beijing: Tsinghua University Press, 2016(in Chinese).
|
[18] |
Chen H, Zhang C, Jia N H, et al. A machine learning model for predicting the minimum miscibility pressure of CO2 and crude oil system based on a support vector machine algorithm approach[J]. Fuel, 2021, 290(1): 120048. http://www.sciencedirect.com/science/article/pii/S0016236120330453
|
[19] |
王万良. 人工智能导论[M]. 北京: 高等教育出版社, 2017.
Wang W L. Introduction to artificial intelligence[M]. Beijing: Higher Education Press, 2017(in Chinese).
|
[20] |
范昕炜. 支持向量机算法的研究及其应用[D]. 杭州: 浙江大学, 2003.
Fan X W. Supportvector machine and its applications[D]. Hangzhou: Zhejiang University, 2003(in Chinese with English abstract).
|