Volume 40 Issue 6
Nov.  2021
Turn off MathJax
Article Contents
Lü Quanru, Zeng Bin, Meng Xiaojun, Chen Gang, Yan Jiakang. Early identification and influence range division method of collapse hazards based on UAV oblique photography technology[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 313-325, 334. doi: 10.19509/j.cnki.dzkq.2021.0631
Citation: Lü Quanru, Zeng Bin, Meng Xiaojun, Chen Gang, Yan Jiakang. Early identification and influence range division method of collapse hazards based on UAV oblique photography technology[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 313-325, 334. doi: 10.19509/j.cnki.dzkq.2021.0631

Early identification and influence range division method of collapse hazards based on UAV oblique photography technology

doi: 10.19509/j.cnki.dzkq.2021.0631
  • Received Date: 20 Dec 2020
  • High-level rock collapse is concealed, sudden and catastrophic. Traditional contact survey methods cannot fully guarantee the safety and also difficult to thoroughly identify the spatial distribution and development characteristics of the dangerous rock blocks on the slope. Therefore, how to obtain the key geological information on the slope surface safely, quickly and accurately has always been one of the difficulties in the investigation and evaluation of collapse disasters, and it is also an extremely important link in the disaster prevention and reduction work. Taking a high-steep rock slope in mining area in Lianyungang City as an example, the paper presents a method for early identification and influence range division of collapse hazard based on UAV oblique photography technology. The method obtains high-resolution image in the research area and constructs a high-precision geological model by oblique photography technology, uses line measurement method to extract and statistics the spatial spreading characteristics and related parameters of the dominant structure surfaces in the slope, determines instability mode of critical dangerous rock blocks in the slope by stereographic projection method, uses Rocfall to simulate the rolling motion characteristics of the collapse blocks under the worst condition after completing the stability evaluation and classification of the dangerous rock blocks, and finally the influence range of different levels was divided for disaster prevention and control. The research results show that the UAV oblique photography technology has significant feasibility and superiority in early identification, failure mode analysis, stability assessment and influence range delineation of collapse hazard. The method of early identification and influence range division of collapse hazards based on UAV oblique photography technology has important reference value.

     

  • loading
  • [1]
    Niethammer U, James M R. UAV-based remote sensing of the Super-Sauze landslide: Evaluation and results[J]. Engineering Geology, 2012, 128(11): 2-11. http://www.onacademic.com/detail/journal_1000035044244410_dd55.html
    [2]
    Li Z, Zhang X Z. Researth on the quick construction of 3D model of city based on oblique photogrammertric technique[J]. Geomatics&Spatial Information Technology, 2012, 35(4): 117-119. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DBCH201204038.htm
    [3]
    陈麒玉, 刘刚, 何珍文, 等. 面向地质大数据的结构-属性一体化三维地质建模技术现状与展望[J]. 地质科技通报, 2020, 39(4): 51-58. doi: 10.19509/j.cnki.dzkq.2020.0407

    Chen Q Y, Liu G, He Z W, et al. Current situation and prospect of structure-attribute integrated 3D geological modeling technology for geological big date[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 51-58(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0407
    [4]
    许腾晖. 西藏日喀则紫金山危岩破坏模式及失稳运动特征研究[D]. 成都: 成都理工大学, 2019.

    Xu T H. Study on failure mode and instability motion characteristics of perilous rocks in Zijin Mountain, Xigaze, Tibet[D]. Chengdu: Chengdu University of Technology, 2019(in Chinese with English abstract).
    [5]
    Sturzenegger M, Stead D. Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts[J]. Engineering Geology, 2009, 106(3): 163-182. http://www.onacademic.com/detail/journal_1000034074653510_164b.html
    [6]
    Uysal M, Toprak A S, Polat N. DEM generation with UAV photogrammetry and accuracy analysis in Sahitler hill[J]. Measurement, 2015, 73(1): 539-543. http://www.sciencedirect.com/science/article/pii/S0263224115003243
    [7]
    郭晨, 许强, 董秀军, 等. 无人机在重大地质灾害应急调查中的应用[J]. 测绘通报, 2020(10): 6-11, 73. https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB202010002.htm

    Guo C, Xu Q, Dong X J, et al. Application of UAV photogrammetry technology in the emergency rescue of catastrophic geohazards[J]. Bulletin of Surveying and Mapping, 2020(10): 6-11, 73(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB202010002.htm
    [8]
    叶震, 许强, 刘谦, 等. 无人机倾斜摄影测量在边坡岩体结构面调查中的应用[J]. 武汉大学学报: 信息科学版, 2020, 45(11): 1739-1746. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202011010.htm

    Ye Z, Xu Q, Liu Q, et al. Application of unmanned aerial vehicle oblique photogrammetry to investigation of high slope rock structure[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1739-1746(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202011010.htm
    [9]
    谢金, 杨根兰, 覃乙根, 等. 基于无人机与Rockfall的危岩体结构特征识别与运动规律模拟[J]. 河南理工大学学报: 自然科学版, 2021, 40(1): 55-64. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB202101007.htm

    Xie J, Yang G L, Qin Y G, et al. Recognition of dangerous rock mass structure characteristic and movement law simulation based on UAV and Rockfall[J]. Journal of Henan Polytechnic University: Natural Science Edition, 2021, 40(1): 55-64(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB202101007.htm
    [10]
    陈宙翔, 叶咸, 张文波, 等. 基于无人机倾斜摄影的强震区公路高位危岩崩塌形成机制及稳定性评价[J]. 地震工程学报, 2019, 41(1): 257-267. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201901037.htm

    Chen Z X, Ye X, Zhang W B, et al. Formation mechanism analysis and stability evaluation of dangerous rock collapses based on the oblique photography by unmanned aerial vehicles[J]. China Earthquake Engineering Journal, 2019, 41(1): 257-267(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201901037.htm
    [11]
    黄海宁, 黄健, 周春宏, 等. 无人机影像在高陡边坡危岩体调查中的应用[J]. 水文地质工程地质, 2019, 46(6): 149-155. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201906021.htm

    Huang H N, Huang J, Zhou C H, et al. Application of UAV images to rockfall investigation at the high and steep slope[J]. Hydrogeology & Engineering Geology, 2019, 46(6): 149-155(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201906021.htm
    [12]
    Dorren L, Maier B, Putters U S, et al. Combining field and modelling techniques to assess rockfall dynamics on a protection forest hillslope in the European Alps[J]. Geomorphology, 2004, 57(3/4): 151-167.
    [13]
    Utlu M, Ozturk M Z, Imek M. Rockfall analysis based on UAV technology in Kazklali Gorge, Aladalar(Taurus Mountains, Turkey)[J]. International Journal of Environment and Geoinformatics, 2020, 7(3): 239-251. http://www.researchgate.net/publication/344249492_Rockfall_analysis_based_on_UAV_technology_in_Kazikliali_Gorge_Aladaglar_Taurus_Mountains_Turkey
    [14]
    陈泰江, 章广成, 向欣. 非均一性斜坡落石运动轨迹[J]. 地质科技通报, 2021, 40(4): 196-203. doi: 10.19509/j.cnki.dzkq.2021.0413

    Chen T Z, Zhang G C, Xiang X. Trajectory of rockfall on the uniform slope[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 196-203(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0413
    [15]
    Alexandre B, Renaud M. Deep learning for robust normal estimation in unstructured point clouds[J]. Computer Graphics Forum, 2016, 35(5): 281-290. http://smartsearch.nstl.gov.cn/paper_detail.html?id=7215b51fe6a693a4dba809c89926ad73
    [16]
    赵帅. POS辅助空中三角测量技术现状及关键问题研究[D]. 西安: 西安科技大学. 2012.

    Zhao S. Research to technical state and key problems of POS supported aerial triangulation[D]. Xi'an: Xi'an University of Science and Technology, 2012(in Chinese with English abstract).
    [17]
    Thiele S T, Lachlan G, Anindita S, et al. Rapid, semi-automatic fracture and contact mapping for point clouds, images and geophysical data[J]. Solid Earth, 2017, 8(6): 1241-1253. http://www.solid-earth.net/8/1241/2017/se-8-1241-2017.pdf
    [18]
    李水清, 张慧超, 刘乳燕. 无人机摄影测量半自动统计岩体结构面产状[J]. 科学技术与工程, 2017, 17(26): 18-22. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201726003.htm

    Li S Q, Zhang H C, Liu R Y, et al. Semi-automatically counting orientation of rock mass structural plane based on unmanned aerial vehicle photogrammetry[J]. Science Technology and Engineering, 2017, 17(26): 18-22(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201726003.htm
    [19]
    万剑华, 王朝, 刘善伟, 等. 倾斜摄影测量构建地质数字露头[J]. 地质科技情报, 2019, 38(1): 258-264. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901029.htm

    Wan J H, Wang C, Liu S W, et al. Reconsting geological digital outcrops with oblique photogrammetry[J]. Geological Science and Technology Information, 2019, 38(1): 258-264(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901029.htm
    [20]
    刘昌军, 丁留谦, 孙东亚. 基于激光点云数据的岩体结构面全自动模糊群聚分析及几何信息获取[J]. 岩石力学与工程学报, 2011, 30(2): 358-364. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201102021.htm

    Liu C J, Ding L Q, Sun D Y. Automatic fuzzy clustering analysis and geometric information acquisition of rock mass discontinuities based on laser point cloud data[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(2): 358-364(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201102021.htm
    [21]
    Hoek E. 岩石边坡工程[M]. 北京: 冶金工业出版社, 1983.

    Hoek E. Rock slope engineering[M]. Beijing: Metallurgical Industry Press, 1983(in Chinese).
    [22]
    Chen H K, Tang H M, Wang R. Calculation method of stability for unstable rock and application to the three gorges reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(4): 614-619.
    [23]
    谷飞宏, 王亮清, 刘庆涛, 等. 赤平投影法确定边坡稳定性系数[J]. 华北水利水电学院学报, 2011, 32(4): 119-121. https://www.cnki.com.cn/Article/CJFDTOTAL-HBSL201104035.htm

    Gu F H, Wang L Q, Liu Q T, et al. Determination of slope stability coefficient by hemispherical projection method[J]. Journal of North China University of Water Resources and Electric Power, 2011, 32(4): 119-121(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HBSL201104035.htm
    [24]
    陈祖煜. 岩质边坡稳定分析原理·方法·程序[M]. 北京: 中国水利水电出版社, 2005.

    Chen Z Y. Stability analysis of rock slope principles, methods and procedures[M]. Beijing: China Water & Power Press, 2005(in Chinese).
    [25]
    唐红梅, 李阳, 王林峰. 三峡库区陡高边坡落石运动特性数值模拟分析[J]. 重庆师范大学学报: 自然科学版, 2019, 36(4): 49-54. https://www.cnki.com.cn/Article/CJFDTOTAL-CQSF201904009.htm

    Tang H M, Li Y, Wang L F. Numerical simulation analysis of rock movement characteristics of steep high slope in Three Gorges reservoir area[J]. Journal of Chongqing Normal University: Natural Science Edition, 2019, 36(4): 49-54(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CQSF201904009.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(462) PDF Downloads(242) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return