Volume 40 Issue 6
Nov.  2021
Turn off MathJax
Article Contents
Dong Longlong, Mei Guoxiong, Wu Wenbing, Wang Lixing, Ruan Hengfeng. Numerical simulation of working characteristics of energy pile group under thermo-mechanical coupling[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 326-334. doi: 10.19509/j.cnki.dzkq.2021.0632
Citation: Dong Longlong, Mei Guoxiong, Wu Wenbing, Wang Lixing, Ruan Hengfeng. Numerical simulation of working characteristics of energy pile group under thermo-mechanical coupling[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 326-334. doi: 10.19509/j.cnki.dzkq.2021.0632

Numerical simulation of working characteristics of energy pile group under thermo-mechanical coupling

doi: 10.19509/j.cnki.dzkq.2021.0632
  • Received Date: 01 Mar 2021
  • In order to study the working characteristics of energy pile groups, based on the Abaqus finite element simulation, assigns the average temperature of the heat transfer stable stage to the pile body for steady-state thermo-mechanical coupling calculation, and proposes a simplified analysis method for the bearing characteristics of energy pile groups.The reliability of this research method is verified through the comparative analysis with field data.Combined with an example, this method is used to analyze the bearing characteristics of energy group piles under the action of pure mechanical load and thermal coupling.The results show that the non-uniform settlement of the distributed symmetrical arrangement of energy piles in the pile group foundation is significantly less than that of the centralized arrangement, and the layout has a great influence on the response characteristics of the pile foundation structure.Under the condition of equal stiffness of pile foundation, the control effect of pile group tilt is better by increasing pile diameter and decreasing pile spacing.The research results of this paper can provide some reference value for the engineering application of energy pile group.

     

  • loading
  • [1]
    Laloui L, Nuth M, Vulliet L. Experimental and numerical investigations of the behaviour of a heat exchanger pile[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2005, 30(8): 763-781. doi: 10.1002/nag.499/pdf
    [2]
    Mc Cartney J S, Murphy K D. Strain distributions in full-scale energy foundations[J]. The Journal of the Deep Foundations Institute, 2012, 6(2): 26-38. doi: 10.1179/dfi.2012.008
    [3]
    桂树强, 程晓辉. 能源桩换热过程中结构响应原位试验研究[J]. 岩土工程学报, 2014, 36(6): 1087-1094. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201406018.htm

    Gui S Q, Cheng X H. In-situ tests on structural responses of energy piles during heat exchanging process[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1087-1094(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201406018.htm
    [4]
    Stewart M A, Mccartney J S. Centrifuge modeling of soil-structure interaction in energy foundations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(4): 04013044. doi: 10.1061/(ASCE)GT.1943-5606.0001061
    [5]
    Ng C W W, Shi C, Gunawan A, et al. Centrifuge modelling of heating effects on energy pile performance in[J]. Canadian Geotechnical Journal, 2015, 52(8): 1045-1057. doi: 10.1139/cgj-2014-0301
    [6]
    刘汉龙, 王成龙, 孔纲强, 等. 不同压实度下能量桩的热力学效应[J]. 中国科技论文, 2016, 11(13): 1511-1515. doi: 10.3969/j.issn.2095-2783.2016.13.016

    Liu H L, Wang C L, Kong G Q, et al. Thermal-mechanical characteristics of energy pile under different degree of compaction[J]. China Science Paper, 2016, 11(13): 1511-1515(in Chinese with English abstract). doi: 10.3969/j.issn.2095-2783.2016.13.016
    [7]
    刘汉龙, 吴迪, 孔纲强, 等. 预埋与绑扎埋管形式能量桩传热特性研究[J]. 岩土力学, 2017, 38(2): 333-340. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201702005.htm

    Liu H L, Wu D, Kong G Q, et al. Thermal response of energy piles with embedded tube and tied tube[J]. Rock and Soil Mechanics, 2017, 38(2): 333-340(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201702005.htm
    [8]
    孔纲强, 王成龙, 刘汉龙, 等. 多次温度循环对能量桩桩顶位移影响分析[J]. 岩土力学, 2017, 38(4): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201704006.htm

    Kong G Q, Liu H L, Wang C L, et al. Analysis of pile head displacement of energy pile under repeated temperature cycling[J]. Rock and Soil Mechanics, 2017, 38(4): 1-7(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201704006.htm
    [9]
    Knellwolf C, Péron H, Laloui L. Geotechnical analysis of heat exchanger piles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(10): 890-902. doi: 10.1061/(ASCE)GT.1943-5606.0000513
    [10]
    费康, 戴迪, 洪伟. 能量桩单桩工作特性简化分析方法[J]. 岩土力学, 2019, 40(1): 70-80, 90. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901004.htm

    Fei K, Dai D, Hong W. A simplified method for working performance analysis of single energy piles[J]. Rock and Soil Mechanics, 2019, 40(1): 70-80, 90(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901004.htm
    [11]
    罗喆, 胡彪. 基于热力荷载传递原理的能量桩长期响应研究[J]. 防灾减灾工程学报, 2019, 39(4): 549-555, 563. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201904002.htm

    Luo Z, Hu B. Study on long-term response of energy pile based on thermal load transfer principle[J]. Journal of Disaster Prevention and Mitigation Engineering, 2019, 39(4): 549-555, 563(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201904002.htm
    [12]
    董龙龙, 吴文兵, 梁荣柱, 等. 基于指数模型的能源桩长期响应研究[J]. 岩石力学与工程学报, 2021, 40(3): 629-639. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202103017.htm

    Dong L L, Wu W B, Liang R Z, et al. Study on long-term response of energy pile based on exponential model[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(3): 629-639(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202103017.htm
    [13]
    蒋刚, 李仁飞, 王昊, 等. 摩擦型能源桩热-力耦合全过程承载性能分析[J]. 岩石力学与工程学报, 2019, 38(12): 2525-2534. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201912012.htm

    Jiang G, Li R F, Wang H, et al. Numerical analysis of the bearing capacity of floating energy piles during the full process of thermal-mechanical coupling[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(12): 2525-2534(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201912012.htm
    [14]
    Fang J, Kong G, Meng Y, et al. Thermomechanical behavior of energy piles and interactions within energy pile-raft foundations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(9): 04020079. doi: 10.1061/(ASCE)GT.1943-5606.0002333
    [15]
    Ng C, Ma Q J. Energy pile group subjected to non-symmetrical cyclic thermal loading in centrifuge[J]. Géotechnique Letters, 2019, 9(2): 1-17. http://www.researchgate.net/publication/334272138_Energy_pile_group_subjected_to_non-symmetrical_cyclic_thermal_loading_in_centrifuge
    [16]
    Jeong S, Lim H, Lee J K, et al. Thermally induced mechanical response of energy piles in axially loaded pile groups[J]. Applied Thermal Engineering, 2014, 71(1): 608-615. doi: 10.1016/j.applthermaleng.2014.07.007
    [17]
    Dupray F, Laloui L, Kazangba A. Numerical analysis of seasonal heat storage in an energy pile foundation[J]. Computers and Geotechnics, 2014, 55: 67-77. doi: 10.1016/j.compgeo.2013.08.004
    [18]
    Saggu R, Chakraborty T. Thermomechanical response of geothermal energy pile groups in sand[J]. International Journal of Geomechanics, ASCE, 2016, 16(4): 04015100. doi: 10.1061/(ASCE)GM.1943-5622.0000567
    [19]
    Salciarini D, Ronchi F, Cattoni E, et al. Thermo mechanical effects induced by energy piles operation in a small piled raft[J]. International Journal of Geomechanics, ASCE, 2015, 15(2): 04014042. doi: 10.1061/(ASCE)GM.1943-5622.0000375
    [20]
    Suryatriyastuti M E, Burlon S, Mroueh H. On the understanding of cyclic interaction mechanisms in an energy pile group[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40(1): 3-24. doi: 10.1002/nag.2382
    [21]
    Peng H, Kong G, Liu H, et al. Thermo mechanical behaviour of floating energy pile groups in sand[J]. Journal of Zhejiang University: Science A, 2018, 19(8): 638-649. doi: 10.1631/jzus.A1700460
    [22]
    Murphy K D, Mccartney J S, Henry K S. Evaluation of thermo-mechanical and thermal behavior of full-scale energy foundations[J]. Acta Geotechnica, 2013, 10(2): 179-195. doi: 10.1007/s11440-013-0298-4
    [23]
    费康, 朱志慧, 石雨恒, 等. 能量桩群桩工作特性简化分析方法研究[J]. 岩土力学, 2020, 41(12): 3889-3898. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202012008.htm

    Fei K, Zhu Z H, Shi Y H, et al. A simplified method for geotechnical analysis of energy pile groups[J]. Rock and Soil Mechanics, 2020, 41(12): 3889-3898(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202012008.htm
    [24]
    陈根. 长桩型能源桩热-力耦合承载性能的现场测试与数值分析[D]. 南京: 南京工业大学, 2017.

    Chen G. Field test and numerical analysis of thermal-mechanical coupling bearing capacity of long pile type energy pile[D]. Nanjing: Nanjing Tech University, 2017(in Chinese with English abstract).
    [25]
    Batinia N, Alessandro F R L, Conti P, et al. Energy and geotechnical behaviour of energy piles for different design solutions[J]. Applied Thermal Engineering, 2015, 86: 199-213. doi: 10.1002/nag.2341
    [26]
    龚晓南, 陈明中. 桩筏基础设计方案优化若干问题[J]. 土木工程学报, 2001, 34(4): 107-110. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200104017.htm

    Gong X N, Chen M Z. Some issues on the optimum design for a piled raft foundation[J]. Chinese Journal of Civil Engineering, 2001, 34(4): 107-110(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200104017.htm
    [27]
    王忠凯, 徐光黎. 盾构施工对既有建(构)筑地基承载力影响及加固土体稳定性分析[J]. 地质科技通报, 2020, 39(4): 109-116. doi: 10.19509/j.cnki.dzkq.2020.0414

    Wang Z K, Xu G L. Effect of shield tunneling construction on bearing capacity of existing buildings and stability analysis of reinforced soil[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 109-116(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0414
    [28]
    江强强, 焦玉勇, 骆进, 等. 能源桩传热与承载特性研究现状及展望[J]. 岩土力学, 2019, 40(9): 3351-3362, 3372. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201909008.htm

    Jiang Q Q, Jiao Y Y, Luo J, et al. Review and prospect on heat transfer and bearing performance of energy piles[J]. Rock and Soil Mechanics, 2019, 40(9): 3351-3362, 3372(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201909008.htm
    [29]
    陈鑫, 向先超, 刘凯, 等. 小桩距下的抗滑桩后滑坡推力分布规律分析[J]. 地质科技情报, 2019, 38(6): 157-164. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906019.htm

    Chen X, Xiang X C, Liu K, et al. Thrust distribution law of anti-slide pile under small pile spacing[J]. Geological Science and Technology Information, 2019, 38(6): 157-164(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906019.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(459) PDF Downloads(210) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return