Volume 41 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
Wang Yanxin, Du Yao, Deng Yamin, Gan Yiqun, Wang Peifang, Ma Teng, Shi Jianbo, Xie Xianjun. Lacustrine groundwater discharge and lake water quality evolution[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 1-10. doi: 10.19509/j.cnki.dzkq.2022.0001
Citation: Wang Yanxin, Du Yao, Deng Yamin, Gan Yiqun, Wang Peifang, Ma Teng, Shi Jianbo, Xie Xianjun. Lacustrine groundwater discharge and lake water quality evolution[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 1-10. doi: 10.19509/j.cnki.dzkq.2022.0001

Lacustrine groundwater discharge and lake water quality evolution

doi: 10.19509/j.cnki.dzkq.2022.0001
  • Received Date: 30 Nov 2021
    Available Online: 02 Mar 2022
  • Lake eutrophication is one of the most typical and serious water environmental problems in the world, and input of both point-source and non-point source nutrients into lake has been the focus of previous studies.However, the role of surface water-groundwater interactions in the occurrence and evolution of lake eutrophication has been often neglected.In this paper, the patterns of groundwater-lake water interactions were summarized, the research progress on the influence of groundwater discharge on the hydrology and water quality of lake were reviewed, and the advantages and applicability of different quantifying methods such as seepage meter measurement, water balance, radon mass balance, temperature tracing, and numerical simulation) were compared.The state-of-art of the studies and major challenges in understanding the spatial-temporal variability of groundwater discharge to lakes, and the transport and transformation of nitrogen and phosphorus at the groundwater-lake interface were reviewed.And three directions for the future study in this field were proposed: 1) characterizing the spatial-temporal variability of lacustrine groundwater discharge using multiple methods; 2) accurately quantifying the loads of nitrogen and phosphorus with groundwater discharge into lakes, on the basis of revealing hydrobiogeochemical processes at the interface; and 3) unraveling the effect of strong anthropogenic activities on groundwater-lake interactions.

     

  • loading
  • [1]
    Meinikmann K, Hupfer M, Lewandowski J. Phosphorus in groundwater discharge: A potential source for lake eutrophication[J]. Journal of Hydrology, 2015, 524: 214-226. doi: 10.1016/j.jhydrol.2015.02.031
    [2]
    Knights D, Parks K C, Sawyer A H, et al. Direct groundwater discharge and vulnerability to hidden nutrient loads along the Great Lakes coast of the United States[J]. Journal of Hydrology, 2017, 554: 331-341. doi: 10.1016/j.jhydrol.2017.09.001
    [3]
    Kazmierczak J, Postma D, Müller S, et al. Groundwater-controlled phosphorus release and transport from sandy aquifer into lake[J]. Limnology and Oceanography, 2020, 65(9): 2188-2204. doi: 10.1002/lno.11447
    [4]
    Rakhimbekova S, O'Carroll D M, Oldfield L E, et al. Spatiotemporal controls on septic system derived nutrients in a nearshore aquifer and their discharge to a large lake[J]. Science of the Total Environment, 2021, 752: 141262. doi: 10.1016/j.scitotenv.2020.141262
    [5]
    Holman I P, Howden N J, Bellamy P, et al. An assessment of the risk to surface water ecosystems of groundwater P in the UK and Ireland[J]. Science of the Total Environment, 2010, 408(8): 1847-1857. doi: 10.1016/j.scitotenv.2009.11.026
    [6]
    Burnett W C, Wattayakorn G, Supcharoen R, et al. Groundwater discharge and phosphorus dynamics in a flood-pulse system: Tonle Sap Lake, Cambodia[J]. Journal of Hydrology, 2017, 549: 79-91. doi: 10.1016/j.jhydrol.2017.03.049
    [7]
    Luo X, Kuan X, Jiao J J, et al. Evaluation of lacustrine groundwater discharge, hydrologic partitioning, and nutrient budgets in a proglacial lake in the Qinghai-Tibet Plateau: Using 222Rn and stable isotopes[J]. Hydrology and Earth System Sciences, 2018, 22(10): 5579-5598. doi: 10.5194/hess-22-5579-2018
    [8]
    Sun X, Du Y, Deng Y, et al. Contribution of groundwater discharge and associated contaminants input to Dongting Lake, Central China, using multiple tracers (222Rn, 18O, Cl)[J]. Environmental Geochemistry and Health, 2021, 43(3): 1239-1255. doi: 10.1007/s10653-020-00687-z
    [9]
    Yu L, Rozemeijer J C, Broers H P, et al. Drivers of nitrogen and phosphorus dynamics in a groundwater-fed urban catchment revealed by high-frequency monitoring[J]. Hydrology and Earth System Sciences, 2021, 25: 69-87. doi: 10.5194/hess-25-69-2021
    [10]
    Brookfield A E, Hansen A T, Sullivan P L, et al. Predicting algal blooms: Are we overlooking groundwater?[J]. Science of the Total Environment, 2021, 769(1): 144442.
    [11]
    Meinikmann K, Lewandowski J, Nützmann G. Lacustrine groundwater discharge: Combined determination of volumes and spatial patterns[J]. Journal of Hydrology, 2013, 502: 202-211. doi: 10.1016/j.jhydrol.2013.08.021
    [12]
    Lewandowski J, Meinikmann K, Ruhtz T, et al. Localization of lacustrine groundwater discharge (LGD) by airborne measurement of thermal infrared radiation[J]. Remote Sensing of Environment, 2013, 138: 119-125. doi: 10.1016/j.rse.2013.07.005
    [13]
    Tecklenburg C, Blume T. Identifying, characterizing and predicting spatial patterns of lacustrine groundwater discharge[J]. Hydrology and Earth System Sciences, 2017, 21(10): 5043-5063. doi: 10.5194/hess-21-5043-2017
    [14]
    Hare D K, Boutt D F, Clement W P, et al. Hydrogeological controls on spatial patterns of groundwater discharge in peatlands[J]. Hydrology and Earth System Sciences, 2017, 21(12): 6031-6048. doi: 10.5194/hess-21-6031-2017
    [15]
    Lewandowski J, Meinikmann K, Nützmann G, et al. Groundwater-the disregarded component in lake water and nutrient budgets. Part 2: Effects of groundwater on nutrients[J]. Hydrological Processes, 2015, 29(13): 2922-2955. doi: 10.1002/hyp.10384
    [16]
    Naranjo R C, Niswonger R G, Smith D, et al. Linkages between hydrology and seasonal variations of nutrients and periphyton in a large oligotrophic subalpine lake[J]. Journal of Hydrology, 2019, 568: 877-890. doi: 10.1016/j.jhydrol.2018.11.033
    [17]
    Li Y, Zhang Q, Liu X, et al. Water balance and flashiness for a large floodplain system: A case study of Poyang Lake, China[J]. Science of the Total Environment, 2020, 710: 135499. doi: 10.1016/j.scitotenv.2019.135499
    [18]
    Gurrieri J T, Furniss G. Estimation of groundwater exchange in alpine lakes using non-steady mass-balance methods[J]. Journal of Hydrology, 2004, 297(1/4): 187-208.
    [19]
    Stets E G, Winter T C., Rosenberry D O, et al. Quantification of surface water and groundwater flows to open-and closed-basin lakes in a headwaters watershed using a descriptive oxygen stable isotope model[J]. Water Resources Research, 2010, 46(3): 2013-2024.
    [20]
    Kidmose J, Nilsson B, Engesgaard P, et al. Descarga localizada de água subterrânea com fósforo para um lago drenante eutrófico (Lago Væng, Dinamarca): Implicaçöes para o estado ecológico do lago e sua reabilitação[J]. Hydrogeology Journal, 2013, 21(8): 1787-1802. doi: 10.1007/s10040-013-1043-7
    [21]
    Liao F, Wang G, Shi Z, et al. Estimation of groundwater discharge and associated chemical fluxes into Poyang Lake, China: Approaches using stable isotopes (δD and δ18O) and radon[J]. Hydrogeology Journal, 2018, 26(5): 1625-1638. doi: 10.1007/s10040-018-1793-3
    [22]
    Harvey F E, Lee D R, Rudolph D L, et al. Locating groundwater discharge in large lakes using bottom sediment electrical conductivity mapping[J]. Water Resources Research, 1997, 33(11): 2609-2615. doi: 10.1029/97WR01702
    [23]
    Sebestyen S D, Schneider R L. Dynamic temporal patterns of nearshore seepage flux in a headwater Adirondack Lake[J]. Journal of Hydrology, 2001, 247(3/4): 137-150.
    [24]
    Ji T, Peterson R N, Befus K M, et al. Characterization of groundwater discharge to Nottawasaga Bay, Lake Huron with hydraulic and 222Rn measurements[J]. Journal of Great Lakes Research, 2017, 43(5): 920-929. doi: 10.1016/j.jglr.2017.07.003
    [25]
    Kong F, Sha Z, Luo X, et al. Evaluation of lacustrine groundwater discharge and associated nutrients, trace elements and DIC loadings into Qinghai Lake in Qinghai-Tibetan Plateau, using radium isotopes and hydrological methods[J]. Chemical Geology, 2019, 510: 31-46. doi: 10.1016/j.chemgeo.2019.01.020
    [26]
    Yi L, Lu X, Nie Z, et al. Delineation of groundwater flow and estimation of lake water flushing time using radium isotopes and geochemistry in an arid desert: The case of Badain Jaran Desert in western Inner Mongolia (CHN)[J]. Applied Geochemistry, 2020, 122: 104740. doi: 10.1016/j.apgeochem.2020.104740
    [27]
    Yang N, Zhou P, Wang G, et al. Hydrochemical and isotopic interpretation of interactions between surface water and groundwater in Delingha, Northwest China[J]. Journal of Hydrology, 2021, 598: 126243. doi: 10.1016/j.jhydrol.2021.126243
    [28]
    Rosenberry D O, Lewandowski J, Meinikmann K, et al. Groundwater-the disregarded component in lake water and nutrient budgets. Part 1: Effects of groundwater on hydrology[J]. Hydrological Processes, 2015, 29(13): 2895-2921. doi: 10.1002/hyp.10403
    [29]
    Robertson D M, Rose W J, Saad D A. Water quality, hydrology, and phosphorus loading to Little St. Germain Lake, Wisconsin, with special emphasis on the effects of winter aeration and ground-water inputs[R]. Vilas: US Department of the Interior, US Geological Survey, 2005.
    [30]
    Özen A, Karapınar B, Kucuk I, et al. Drought-induced changes in nutrient concentrations and retention in two shallow Mediterranean lakes subjected to different degrees of management[J]. Hydrobiologia, 2010, 646(1): 61-72. doi: 10.1007/s10750-010-0179-x
    [31]
    Jarosiewicz A, Witek Z. Where do nutrients in an inlet-less lake come from? The water and nutrient balance of a small mesotrophic lake[J]. Hydrobiologia, 2014, 724(1): 157-173. doi: 10.1007/s10750-013-1731-2
    [32]
    Lee T M, Swancar A. Influence of evaporation, groundwater, and uncertainty in the hydrologic budget of Lake Lucerne, a seepage lake in Polk County, Florida[R]. Vilas: U.S. Geological Survey Water Supply Paper, 1997.
    [33]
    Taniguchi M, Fukuo Y. Continuous measurements of ground-water seepage using an automatic seepage meter[J]. Groundwater, 1993, 31(4): 675-679. doi: 10.1111/j.1745-6584.1993.tb00601.x
    [34]
    Paulsen R J, Smith C F, O'Rourke D, et al. Development and evaluation of an ultrasonic groundwater seepage meter[J]. Groundwater, 2001, 39(6): 904-911. doi: 10.1111/j.1745-6584.2001.tb02478.x
    [35]
    Rosenberry D O, Morin R H. Use of an electromagnetic seepage meter to investigate temporal variability in lake seepage[J]. Groundwater, 2004, 42(1): 68-77. doi: 10.1111/j.1745-6584.2004.tb02451.x
    [36]
    Choi J, Harvey J W. Quantifying time-varying groundwater discharge and recharge in wetlands of the northern Florida Everglades[J]. Wetlands, 2000, 2: 500-511.
    [37]
    Kidmose J, Engesgaard P, Nilsson B, et al. Spatial distribution of seepage at a flow-through lake: Lake Hampen, Western Denmark[J]. Vadose Zone Journal, 2001, 10(1): 110-124.
    [38]
    Sachse A, Fischer C, Laronne J B, et al. Water balance estimation under the challenge of data scarcity in a hyperarid to Mediterranean region[J]. Hydrological Processes, 2017, 31(13): 2395-2411. doi: 10.1002/hyp.11189
    [39]
    Schmidt A, Gibson J J, Santos I R, et al. The contribution of groundwater discharge to the overall water budget of two typical Boreal lakes in Alberta/Canada estimated from a radon mass balance[J]. Hydrology and Earth System Sciences, 2010, 14(1): 79-89. doi: 10.5194/hess-14-79-2010
    [40]
    Dimova N T, Burnett W C. Evaluation of groundwater discharge into small lakes based on the temporal distribution of radon-222[J]. Limnology and Oceanography, 2011, 56(2): 486-494. doi: 10.4319/lo.2011.56.2.0486
    [41]
    Dimova N T, Burnett W C, Chanton J P, et al. Application of radon-222 to investigate groundwater discharge into small shallow lakes[J]. Journal of Hydrology, 2013, 486: 112-122. doi: 10.1016/j.jhydrol.2013.01.043
    [42]
    Petermann E, Gibson J J, Knöller K, et al. Determination of groundwater discharge rates and water residence time of groundwater-fed lakes by stable isotopes of water (18O, 2H) and radon (222Rn) mass balance[J]. Hydrological Processes, 2018, 32: 805-816. doi: 10.1002/hyp.11456
    [43]
    Constantz J E. Interaction between stream temperature, stream flow, and groundwater exchanges in alpine streams[J]. Water Resources Research, 1998, 34(7): 1609-1615. doi: 10.1029/98WR00998
    [44]
    Anderson M P. Heat as a ground water tracer[J]. Ground Water, 2005, 43(6): 951-968. doi: 10.1111/j.1745-6584.2005.00052.x
    [45]
    Keery J, Binley A, Crook N, et al. Temporal and spatial variability of groundwater-surface water fluxes: Development and application of an analytical method using temperature time series[J]. Journal of Hydrology, 2007, 336: 1-16. doi: 10.1016/j.jhydrol.2006.12.003
    [46]
    Stallman R W. Steady one-dimensional fluid flow in a semi-infinite porous medium with sinusoidal surface temperature[J]. Journal of Geophysical Research, 1965, 70(12): 2821-2827. doi: 10.1029/JZ070i012p02821
    [47]
    Hatch C E, Fisher A T, Revenaugh J S, et al. Quantifying surface water-groundwater interactions using time series analysis of streambed thermal records: Method development[J]. Water Resources Research, 2006, 42(10): W10410.1-W10410.14.
    [48]
    Gordon R P, Lautz L K, Briggs M A, et al. Automated calculation of vertical pore-water flux from field temperature time series using the VFLUX method and computer program[J]. Journal of Hydrology, 2012, 420: 142-158.
    [49]
    Selker J S, Thevenaz L, Huwald H, et al. Distributed fiber-optic temperature sensing for hydrologic systems[J]. Water Resources Research, 2006, 42(12): 12202-1-12202-8.
    [50]
    Blume T, Krause S, Meinikmann K, et al. Upscaling lacustrine groundwater discharge rates by fiber-optic distributed temperature sensing[J]. Water Resources Research, 2013, 49(12): 7929-7944. doi: 10.1002/2012WR013215
    [51]
    Arricibita A I M, Dugdale S J, Krause S, et al. Thermal infrared imaging for the detection of relatively warm lacustrine groundwater discharge at the surface of freshwater bodies[J]. Journal of Hydrology, 2018, 562: 281-289. doi: 10.1016/j.jhydrol.2018.05.004
    [52]
    Feinstein D T, Hunt R J, Reeves H W. Regional groundwater-flow model of the Lake Michigan Basin in support of Great Lakes Basin water availability and use studies[R]. Vilas: U.S. Geological Survey, 2010.
    [53]
    Xu S, Frey S K, Erler A R, et al. Investigating groundwater-lake interactions in the Laurentian Great Lakes with a fully-integrated surface water-groundwater model[J]. Journal of Hydrology, 2021, 594: 125911. doi: 10.1016/j.jhydrol.2020.125911
    [54]
    曾献奎. 基于HydroGeoSphere的凌海市大、小凌河扇地地下水-地表水耦合数值模拟研究[D]. 长春: 吉林大学, 2009.

    Zeng X K. Numerical simulation of groundwater-surface water coupling in the big and little Linghe fans of Linghai City based on HydroGeoSphere[D]. Changchun: Jilin University, 2009(in Chinese with English abstract).
    [55]
    Taniguchi M. Evaluation of the groundwater capture zone for modeling of nutrient discharge[J]. Hydrological Processes, 2001, 15: 1939-1949. doi: 10.1002/hyp.248
    [56]
    Kang W J, Kolasa K V, Rials M W. Groundwater inflow and associated transport of phosphorus to a hypereutrophic lake[J]. Environmental Geology, 2005, 47(4): 565-575. doi: 10.1007/s00254-004-1180-3
    [57]
    Cherkauer D S, Mckereghan P F, Schalch L H. Delivery of chloride and nitrate by ground water to the great lakes: Case study for the Door Peninsula, Wisconsin[J]. Groundwater, 1992, 30(6): 885-894. doi: 10.1111/j.1745-6584.1992.tb01571.x
    [58]
    Nakayama T, Watanabe M. Missing role of groundwater in water and nutrient cycles in the shallow eutrophic Lake Kasumigaura, Japan[J]. Hydrological Processes: An International Journal, 2008, 22(8): 1150-1172. doi: 10.1002/hyp.6684
    [59]
    Winter T C. Numerical simulation of steady state three-dimensional groundwater flow near lakes[J]. Water Resources Research, 1978, 14(2): 245-254. doi: 10.1029/WR014i002p00245
    [60]
    Schneider R L, Negley T L, Wafer C. Factors influencing groundwater seepage in a large, mesotrophic lake in New York[J]. Journal of Hydrology, 2005, 310: 1-16. doi: 10.1016/j.jhydrol.2004.09.020
    [61]
    Kishel H F, Gerla P J. Characteristics of preferential flow and groundwater discharge to Shingobee Lake, Minnesota, USA[J]. Hydrological Processes, 2002, 16(10): 1921-1934. doi: 10.1002/hyp.363
    [62]
    Wallace H, Ji T, Robinson C E. Hydrogeological controls on heterogeneous groundwater discharge to a large glacial lake[J]. Journal of Great Lakes Research, 2020, 46(3): 476-485. doi: 10.1016/j.jglr.2020.03.006
    [63]
    Smart R P, Holden J, Dinsmore K J, et al. The dynamics of natural pipe hydrological behaviour in blanket peat[J]. Hydrological Processes, 2013, 27(11): 1523-1534. doi: 10.1002/hyp.9242
    [64]
    Golubev V A, Klerkx J, Kipfer R. Heat flow, hydrothermal ventsand static stability of discharging thermal water in Lake Baikal (south-eastern Siberia)[J]. Bulletin-Centres de Recherches Exploration Production Elf-Aquitaine, 1993, 17(1): 53-65.
    [65]
    Shaw G D, White E S, Gammons C H. Characterizing groundwater-lake interactions and its impact on lake water quality[J]. Journal of Hydrology, 2013, 492: 69-78. doi: 10.1016/j.jhydrol.2013.04.018
    [66]
    Tóth J. A theoretical analysis of groundwater flow in small drainage basins[J]. Journal of Geophysical Research, 1963, 68(16): 4795-4812. doi: 10.1029/JZ068i016p04795
    [67]
    Dabrowski J S, Charette M A, Mann P J, et al. Using radon to quantify groundwater discharge and methane fluxes to a shallow, tundra lake on the Yukon-Kuskokwim Delta, Alaska[J]. Biogeochemistry, 2020, 148(1): 69-89. doi: 10.1007/s10533-020-00647-w
    [68]
    Levy Y, Burg A, Yechieli Y, et al. Displacement of springs and changes in groundwater flow regime due to the extreme drop in adjacent lake levels: The Dead Sea rift[J]. Journal of Hydrology, 2020, 587: 124928. doi: 10.1016/j.jhydrol.2020.124928
    [69]
    Jarsjö J, Destouni G. Groundwater discharge into the Aral Sea after 1960[J]. Journal of Marine Systems, 2004, 47(1/4): 109-120.
    [70]
    Han Z, Shi X, Jia K, et al. Determining the discharge and recharge relationships between lake and groundwater in Lake Hulun using hydrogen and oxygen isotopes and chloride ions[J]. Water, 2019, 11(2): 264. doi: 10.3390/w11020264
    [71]
    孙晓梁, 杜尧, 邓娅敏, 等. 1996-2017年枯水期地下水排泄对洞庭湖水量均衡的贡献及其时间变异性[J]. 地球科学, 2021, 46(7): 2555-2564. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202107022.htm

    Sun X L, Du Y, Deng Y M, et al. Contribution of groundwater discharge to water balance in Dongting Lake during the dry period from 1996 to 2017 and its temporal variability[J]. Earth Science, 2021, 46(7): 2555-2564(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202107022.htm
    [72]
    Liu W, Xie C, Wang W, et al. Theimpact of permafrost degradation on lake changes in the Endorheic Basin on the Qinghai-Tibet Plateau[J]. Water, 2020, 12(5): 1287. doi: 10.3390/w12051287
    [73]
    苏小四, 师亚坤, 董维红, 等. 潜流带生物地球化学特征研究进展[J]. 地球科学与环境学报, 2019, 41(3): 337-351. doi: 10.3969/j.issn.1672-6561.2019.03.008

    Su X S, Shi Y K, Dong W H, et al. Progress in the biogeochemical characteristic of the hyporheic zone[J]. Journal of Earth Science and Environment, 2019, 41(3): 337-351(in Chinese with English abstract). doi: 10.3969/j.issn.1672-6561.2019.03.008
    [74]
    Riuett M O, Buss S R, Morgan P, et al. Nitrate attenuation in groundwater: A review of biogeochemical controlling processes[J]. Water Research, 2008, 42(16): 4215-4232. doi: 10.1016/j.watres.2008.07.020
    [75]
    Buss S R, Herbert A W, Morgan P, et al. A review of ammonium attenuation in soil and groundwater[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2004, 37(4): 347-359. doi: 10.1144/1470-9236/04-005
    [76]
    Fellows C R, Brezonik P L. Fertilizer flux into two Florida lakes via seepage1[J]. Journal of Environmental Quality, 1981, 10(2): 174-177.
    [77]
    Brock T D, Lee D R, Janes D, et al. Groundwater seepage as a nutrient source to a drainage lake: Lake Mendota, Wisconsin[J]. Water Research, 1982, 16(7): 1255-1263. doi: 10.1016/0043-1354(82)90144-0
    [78]
    Corbett D R, Chanton J, Burnett W, et al. Patterns of groundwater discharge into Florida Bay[J]. Limnology & Oceanography, 1999, 44(4): 1045-1055.
    [79]
    Valiela I, Costa J, Foreman K, et al. Transport of groundwater-borne nutrients from watersheds and their effects on coastal waters[J]. Biogeochemistry, 1990, 10(3): 177-197. doi: 10.1007/BF00003143
    [80]
    Vanek V. Riparian zone as a source of phosphorus for a groundwater-dominated lake[J]. Water Research, 1991, 25(4): 409-418. doi: 10.1016/0043-1354(91)90077-4
    [81]
    Dahm C N, Grimm, N B, Marmonier P, et al. Nutrient dynamics at the interface between surface waters and groundwaters[J]. Freshwater Biology, 1998, 40(3): 427-451. doi: 10.1046/j.1365-2427.1998.00367.x
    [82]
    Bowen J L, Kroeger K D, Tomasky G, et al. A review of land-sea coupling by groundwater discharge of nitrogen to New England estuaries: Mechanisms and effects[J]. Applied Geochemistry, 2006, 22(1): 175-191.
    [83]
    Spiteri C, Slomp C P, Charette M A, et al. Flow and nutrient dynamics in a subterranean estuary (Waquoit Bay, MA, USA): Field data and reactive transport modeling[J]. Geochimicaet Cosmochimica Acta, 2008, 72(14): 3398-3412. doi: 10.1016/j.gca.2008.04.027
    [84]
    Ibánhez J S P, Leote C, Rocha C. Porewater nitrate profiles in sandy sediments hosting submarine groundwater discharge described by an advection-dispersion-reaction model[J]. Biogeochemistry, 2011, 103(1/3): 159-180.
    [85]
    Ommen D A O, KidmoseJ, Karan S, et al. Importance of groundwater and macrophytes for the nutrient balance at oligotrophic Lake Hampen, Denmark[J]. Ecohydrology, 2012, 5(3): 286-296. doi: 10.1002/eco.213
    [86]
    Keeney D R, Chen R L, Graetz D A. Importance of denitrification and nitrate reduction in sediments to the nitrogen budgets of lakes[J]. Nature, 1971, 233: 66-76. doi: 10.1038/233066a0
    [87]
    Capone D G, Slater J M. Interannual patterns of water table height and groundwater derived nitrate in nearshore sediments[J]. Biogeochemistry, 1990, 10(3): 277-288. doi: 10.1007/BF00003148
    [88]
    Reay W G, Gallagher D L, Simmons G M. Groundwater discharge and its impact on surface water quality in a chesapeake bay inlet1[J]. Jawra Journal of the American Water Resources Association, 2010, 28(6): 1121-1134.
    [89]
    Vanek V. The interactions between lake and groundwater and their ecological significance[J]. Stygologia, 1987, 3(1): 1-23.
    [90]
    Schafran G C, Driscoll C T. Porewater acid/base chemistry in near-shore regions of an acidic lake[J]. Biogeochemistry, 1990, 11(2): 131-150.
    [91]
    Garcia-Solsona E, Garcia-Orellana J, Masqué P, et al. Groundwater and nutrient discharge through karstic coastal springs (Castelló, Spain)[J]. Biogeosciences, 2010, 7(9): 2625-2638. doi: 10.5194/bg-7-2625-2010
    [92]
    Stoliker D L, Repert D A, Smith R L, et al. Hydrologic controls on nitrogen cycling processes and functional gene abundance in sediments of a groundwater flow-through lake[J]. Environmental Science & Technology, 2016, 50(7): 3649.
    [93]
    Jasper G J. Uptake of phosphate by iron hydroxides during seepage in relation to development of groundwater composition in coastal areas[J]. Environmental Science & Technology, 1994, 28(4): 675-681.
    [94]
    Griffioen J. Extent of immobilisation of phosphate during aeration of nutrient-rich, anoxic groundwater[J]. Journal of Hydrology, 2006, 320: 359-369. doi: 10.1016/j.jhydrol.2005.07.047
    [95]
    McCobb T D, LeBlanc D R, Massey A J. Monitoring the removal of phosphate from ground water discharging through a Pond-Bottom permeable reactive barrier[J]. Groundwater Monitoring & Remediation, 2009, 29(2): 43-55.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(509) PDF Downloads(113) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return