Citation: | Wang Yanxin, Du Yao, Deng Yamin, Gan Yiqun, Wang Peifang, Ma Teng, Shi Jianbo, Xie Xianjun. Lacustrine groundwater discharge and lake water quality evolution[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 1-10. doi: 10.19509/j.cnki.dzkq.2022.0001 |
[1] |
Meinikmann K, Hupfer M, Lewandowski J. Phosphorus in groundwater discharge: A potential source for lake eutrophication[J]. Journal of Hydrology, 2015, 524: 214-226. doi: 10.1016/j.jhydrol.2015.02.031
|
[2] |
Knights D, Parks K C, Sawyer A H, et al. Direct groundwater discharge and vulnerability to hidden nutrient loads along the Great Lakes coast of the United States[J]. Journal of Hydrology, 2017, 554: 331-341. doi: 10.1016/j.jhydrol.2017.09.001
|
[3] |
Kazmierczak J, Postma D, Müller S, et al. Groundwater-controlled phosphorus release and transport from sandy aquifer into lake[J]. Limnology and Oceanography, 2020, 65(9): 2188-2204. doi: 10.1002/lno.11447
|
[4] |
Rakhimbekova S, O'Carroll D M, Oldfield L E, et al. Spatiotemporal controls on septic system derived nutrients in a nearshore aquifer and their discharge to a large lake[J]. Science of the Total Environment, 2021, 752: 141262. doi: 10.1016/j.scitotenv.2020.141262
|
[5] |
Holman I P, Howden N J, Bellamy P, et al. An assessment of the risk to surface water ecosystems of groundwater P in the UK and Ireland[J]. Science of the Total Environment, 2010, 408(8): 1847-1857. doi: 10.1016/j.scitotenv.2009.11.026
|
[6] |
Burnett W C, Wattayakorn G, Supcharoen R, et al. Groundwater discharge and phosphorus dynamics in a flood-pulse system: Tonle Sap Lake, Cambodia[J]. Journal of Hydrology, 2017, 549: 79-91. doi: 10.1016/j.jhydrol.2017.03.049
|
[7] |
Luo X, Kuan X, Jiao J J, et al. Evaluation of lacustrine groundwater discharge, hydrologic partitioning, and nutrient budgets in a proglacial lake in the Qinghai-Tibet Plateau: Using 222Rn and stable isotopes[J]. Hydrology and Earth System Sciences, 2018, 22(10): 5579-5598. doi: 10.5194/hess-22-5579-2018
|
[8] |
Sun X, Du Y, Deng Y, et al. Contribution of groundwater discharge and associated contaminants input to Dongting Lake, Central China, using multiple tracers (222Rn, 18O, Cl)[J]. Environmental Geochemistry and Health, 2021, 43(3): 1239-1255. doi: 10.1007/s10653-020-00687-z
|
[9] |
Yu L, Rozemeijer J C, Broers H P, et al. Drivers of nitrogen and phosphorus dynamics in a groundwater-fed urban catchment revealed by high-frequency monitoring[J]. Hydrology and Earth System Sciences, 2021, 25: 69-87. doi: 10.5194/hess-25-69-2021
|
[10] |
Brookfield A E, Hansen A T, Sullivan P L, et al. Predicting algal blooms: Are we overlooking groundwater?[J]. Science of the Total Environment, 2021, 769(1): 144442.
|
[11] |
Meinikmann K, Lewandowski J, Nützmann G. Lacustrine groundwater discharge: Combined determination of volumes and spatial patterns[J]. Journal of Hydrology, 2013, 502: 202-211. doi: 10.1016/j.jhydrol.2013.08.021
|
[12] |
Lewandowski J, Meinikmann K, Ruhtz T, et al. Localization of lacustrine groundwater discharge (LGD) by airborne measurement of thermal infrared radiation[J]. Remote Sensing of Environment, 2013, 138: 119-125. doi: 10.1016/j.rse.2013.07.005
|
[13] |
Tecklenburg C, Blume T. Identifying, characterizing and predicting spatial patterns of lacustrine groundwater discharge[J]. Hydrology and Earth System Sciences, 2017, 21(10): 5043-5063. doi: 10.5194/hess-21-5043-2017
|
[14] |
Hare D K, Boutt D F, Clement W P, et al. Hydrogeological controls on spatial patterns of groundwater discharge in peatlands[J]. Hydrology and Earth System Sciences, 2017, 21(12): 6031-6048. doi: 10.5194/hess-21-6031-2017
|
[15] |
Lewandowski J, Meinikmann K, Nützmann G, et al. Groundwater-the disregarded component in lake water and nutrient budgets. Part 2: Effects of groundwater on nutrients[J]. Hydrological Processes, 2015, 29(13): 2922-2955. doi: 10.1002/hyp.10384
|
[16] |
Naranjo R C, Niswonger R G, Smith D, et al. Linkages between hydrology and seasonal variations of nutrients and periphyton in a large oligotrophic subalpine lake[J]. Journal of Hydrology, 2019, 568: 877-890. doi: 10.1016/j.jhydrol.2018.11.033
|
[17] |
Li Y, Zhang Q, Liu X, et al. Water balance and flashiness for a large floodplain system: A case study of Poyang Lake, China[J]. Science of the Total Environment, 2020, 710: 135499. doi: 10.1016/j.scitotenv.2019.135499
|
[18] |
Gurrieri J T, Furniss G. Estimation of groundwater exchange in alpine lakes using non-steady mass-balance methods[J]. Journal of Hydrology, 2004, 297(1/4): 187-208.
|
[19] |
Stets E G, Winter T C., Rosenberry D O, et al. Quantification of surface water and groundwater flows to open-and closed-basin lakes in a headwaters watershed using a descriptive oxygen stable isotope model[J]. Water Resources Research, 2010, 46(3): 2013-2024.
|
[20] |
Kidmose J, Nilsson B, Engesgaard P, et al. Descarga localizada de água subterrânea com fósforo para um lago drenante eutrófico (Lago Væng, Dinamarca): Implicaçöes para o estado ecológico do lago e sua reabilitação[J]. Hydrogeology Journal, 2013, 21(8): 1787-1802. doi: 10.1007/s10040-013-1043-7
|
[21] |
Liao F, Wang G, Shi Z, et al. Estimation of groundwater discharge and associated chemical fluxes into Poyang Lake, China: Approaches using stable isotopes (δD and δ18O) and radon[J]. Hydrogeology Journal, 2018, 26(5): 1625-1638. doi: 10.1007/s10040-018-1793-3
|
[22] |
Harvey F E, Lee D R, Rudolph D L, et al. Locating groundwater discharge in large lakes using bottom sediment electrical conductivity mapping[J]. Water Resources Research, 1997, 33(11): 2609-2615. doi: 10.1029/97WR01702
|
[23] |
Sebestyen S D, Schneider R L. Dynamic temporal patterns of nearshore seepage flux in a headwater Adirondack Lake[J]. Journal of Hydrology, 2001, 247(3/4): 137-150.
|
[24] |
Ji T, Peterson R N, Befus K M, et al. Characterization of groundwater discharge to Nottawasaga Bay, Lake Huron with hydraulic and 222Rn measurements[J]. Journal of Great Lakes Research, 2017, 43(5): 920-929. doi: 10.1016/j.jglr.2017.07.003
|
[25] |
Kong F, Sha Z, Luo X, et al. Evaluation of lacustrine groundwater discharge and associated nutrients, trace elements and DIC loadings into Qinghai Lake in Qinghai-Tibetan Plateau, using radium isotopes and hydrological methods[J]. Chemical Geology, 2019, 510: 31-46. doi: 10.1016/j.chemgeo.2019.01.020
|
[26] |
Yi L, Lu X, Nie Z, et al. Delineation of groundwater flow and estimation of lake water flushing time using radium isotopes and geochemistry in an arid desert: The case of Badain Jaran Desert in western Inner Mongolia (CHN)[J]. Applied Geochemistry, 2020, 122: 104740. doi: 10.1016/j.apgeochem.2020.104740
|
[27] |
Yang N, Zhou P, Wang G, et al. Hydrochemical and isotopic interpretation of interactions between surface water and groundwater in Delingha, Northwest China[J]. Journal of Hydrology, 2021, 598: 126243. doi: 10.1016/j.jhydrol.2021.126243
|
[28] |
Rosenberry D O, Lewandowski J, Meinikmann K, et al. Groundwater-the disregarded component in lake water and nutrient budgets. Part 1: Effects of groundwater on hydrology[J]. Hydrological Processes, 2015, 29(13): 2895-2921. doi: 10.1002/hyp.10403
|
[29] |
Robertson D M, Rose W J, Saad D A. Water quality, hydrology, and phosphorus loading to Little St. Germain Lake, Wisconsin, with special emphasis on the effects of winter aeration and ground-water inputs[R]. Vilas: US Department of the Interior, US Geological Survey, 2005.
|
[30] |
Özen A, Karapınar B, Kucuk I, et al. Drought-induced changes in nutrient concentrations and retention in two shallow Mediterranean lakes subjected to different degrees of management[J]. Hydrobiologia, 2010, 646(1): 61-72. doi: 10.1007/s10750-010-0179-x
|
[31] |
Jarosiewicz A, Witek Z. Where do nutrients in an inlet-less lake come from? The water and nutrient balance of a small mesotrophic lake[J]. Hydrobiologia, 2014, 724(1): 157-173. doi: 10.1007/s10750-013-1731-2
|
[32] |
Lee T M, Swancar A. Influence of evaporation, groundwater, and uncertainty in the hydrologic budget of Lake Lucerne, a seepage lake in Polk County, Florida[R]. Vilas: U.S. Geological Survey Water Supply Paper, 1997.
|
[33] |
Taniguchi M, Fukuo Y. Continuous measurements of ground-water seepage using an automatic seepage meter[J]. Groundwater, 1993, 31(4): 675-679. doi: 10.1111/j.1745-6584.1993.tb00601.x
|
[34] |
Paulsen R J, Smith C F, O'Rourke D, et al. Development and evaluation of an ultrasonic groundwater seepage meter[J]. Groundwater, 2001, 39(6): 904-911. doi: 10.1111/j.1745-6584.2001.tb02478.x
|
[35] |
Rosenberry D O, Morin R H. Use of an electromagnetic seepage meter to investigate temporal variability in lake seepage[J]. Groundwater, 2004, 42(1): 68-77. doi: 10.1111/j.1745-6584.2004.tb02451.x
|
[36] |
Choi J, Harvey J W. Quantifying time-varying groundwater discharge and recharge in wetlands of the northern Florida Everglades[J]. Wetlands, 2000, 2: 500-511.
|
[37] |
Kidmose J, Engesgaard P, Nilsson B, et al. Spatial distribution of seepage at a flow-through lake: Lake Hampen, Western Denmark[J]. Vadose Zone Journal, 2001, 10(1): 110-124.
|
[38] |
Sachse A, Fischer C, Laronne J B, et al. Water balance estimation under the challenge of data scarcity in a hyperarid to Mediterranean region[J]. Hydrological Processes, 2017, 31(13): 2395-2411. doi: 10.1002/hyp.11189
|
[39] |
Schmidt A, Gibson J J, Santos I R, et al. The contribution of groundwater discharge to the overall water budget of two typical Boreal lakes in Alberta/Canada estimated from a radon mass balance[J]. Hydrology and Earth System Sciences, 2010, 14(1): 79-89. doi: 10.5194/hess-14-79-2010
|
[40] |
Dimova N T, Burnett W C. Evaluation of groundwater discharge into small lakes based on the temporal distribution of radon-222[J]. Limnology and Oceanography, 2011, 56(2): 486-494. doi: 10.4319/lo.2011.56.2.0486
|
[41] |
Dimova N T, Burnett W C, Chanton J P, et al. Application of radon-222 to investigate groundwater discharge into small shallow lakes[J]. Journal of Hydrology, 2013, 486: 112-122. doi: 10.1016/j.jhydrol.2013.01.043
|
[42] |
Petermann E, Gibson J J, Knöller K, et al. Determination of groundwater discharge rates and water residence time of groundwater-fed lakes by stable isotopes of water (18O, 2H) and radon (222Rn) mass balance[J]. Hydrological Processes, 2018, 32: 805-816. doi: 10.1002/hyp.11456
|
[43] |
Constantz J E. Interaction between stream temperature, stream flow, and groundwater exchanges in alpine streams[J]. Water Resources Research, 1998, 34(7): 1609-1615. doi: 10.1029/98WR00998
|
[44] |
Anderson M P. Heat as a ground water tracer[J]. Ground Water, 2005, 43(6): 951-968. doi: 10.1111/j.1745-6584.2005.00052.x
|
[45] |
Keery J, Binley A, Crook N, et al. Temporal and spatial variability of groundwater-surface water fluxes: Development and application of an analytical method using temperature time series[J]. Journal of Hydrology, 2007, 336: 1-16. doi: 10.1016/j.jhydrol.2006.12.003
|
[46] |
Stallman R W. Steady one-dimensional fluid flow in a semi-infinite porous medium with sinusoidal surface temperature[J]. Journal of Geophysical Research, 1965, 70(12): 2821-2827. doi: 10.1029/JZ070i012p02821
|
[47] |
Hatch C E, Fisher A T, Revenaugh J S, et al. Quantifying surface water-groundwater interactions using time series analysis of streambed thermal records: Method development[J]. Water Resources Research, 2006, 42(10): W10410.1-W10410.14.
|
[48] |
Gordon R P, Lautz L K, Briggs M A, et al. Automated calculation of vertical pore-water flux from field temperature time series using the VFLUX method and computer program[J]. Journal of Hydrology, 2012, 420: 142-158.
|
[49] |
Selker J S, Thevenaz L, Huwald H, et al. Distributed fiber-optic temperature sensing for hydrologic systems[J]. Water Resources Research, 2006, 42(12): 12202-1-12202-8.
|
[50] |
Blume T, Krause S, Meinikmann K, et al. Upscaling lacustrine groundwater discharge rates by fiber-optic distributed temperature sensing[J]. Water Resources Research, 2013, 49(12): 7929-7944. doi: 10.1002/2012WR013215
|
[51] |
Arricibita A I M, Dugdale S J, Krause S, et al. Thermal infrared imaging for the detection of relatively warm lacustrine groundwater discharge at the surface of freshwater bodies[J]. Journal of Hydrology, 2018, 562: 281-289. doi: 10.1016/j.jhydrol.2018.05.004
|
[52] |
Feinstein D T, Hunt R J, Reeves H W. Regional groundwater-flow model of the Lake Michigan Basin in support of Great Lakes Basin water availability and use studies[R]. Vilas: U.S. Geological Survey, 2010.
|
[53] |
Xu S, Frey S K, Erler A R, et al. Investigating groundwater-lake interactions in the Laurentian Great Lakes with a fully-integrated surface water-groundwater model[J]. Journal of Hydrology, 2021, 594: 125911. doi: 10.1016/j.jhydrol.2020.125911
|
[54] |
曾献奎. 基于HydroGeoSphere的凌海市大、小凌河扇地地下水-地表水耦合数值模拟研究[D]. 长春: 吉林大学, 2009.
Zeng X K. Numerical simulation of groundwater-surface water coupling in the big and little Linghe fans of Linghai City based on HydroGeoSphere[D]. Changchun: Jilin University, 2009(in Chinese with English abstract).
|
[55] |
Taniguchi M. Evaluation of the groundwater capture zone for modeling of nutrient discharge[J]. Hydrological Processes, 2001, 15: 1939-1949. doi: 10.1002/hyp.248
|
[56] |
Kang W J, Kolasa K V, Rials M W. Groundwater inflow and associated transport of phosphorus to a hypereutrophic lake[J]. Environmental Geology, 2005, 47(4): 565-575. doi: 10.1007/s00254-004-1180-3
|
[57] |
Cherkauer D S, Mckereghan P F, Schalch L H. Delivery of chloride and nitrate by ground water to the great lakes: Case study for the Door Peninsula, Wisconsin[J]. Groundwater, 1992, 30(6): 885-894. doi: 10.1111/j.1745-6584.1992.tb01571.x
|
[58] |
Nakayama T, Watanabe M. Missing role of groundwater in water and nutrient cycles in the shallow eutrophic Lake Kasumigaura, Japan[J]. Hydrological Processes: An International Journal, 2008, 22(8): 1150-1172. doi: 10.1002/hyp.6684
|
[59] |
Winter T C. Numerical simulation of steady state three-dimensional groundwater flow near lakes[J]. Water Resources Research, 1978, 14(2): 245-254. doi: 10.1029/WR014i002p00245
|
[60] |
Schneider R L, Negley T L, Wafer C. Factors influencing groundwater seepage in a large, mesotrophic lake in New York[J]. Journal of Hydrology, 2005, 310: 1-16. doi: 10.1016/j.jhydrol.2004.09.020
|
[61] |
Kishel H F, Gerla P J. Characteristics of preferential flow and groundwater discharge to Shingobee Lake, Minnesota, USA[J]. Hydrological Processes, 2002, 16(10): 1921-1934. doi: 10.1002/hyp.363
|
[62] |
Wallace H, Ji T, Robinson C E. Hydrogeological controls on heterogeneous groundwater discharge to a large glacial lake[J]. Journal of Great Lakes Research, 2020, 46(3): 476-485. doi: 10.1016/j.jglr.2020.03.006
|
[63] |
Smart R P, Holden J, Dinsmore K J, et al. The dynamics of natural pipe hydrological behaviour in blanket peat[J]. Hydrological Processes, 2013, 27(11): 1523-1534. doi: 10.1002/hyp.9242
|
[64] |
Golubev V A, Klerkx J, Kipfer R. Heat flow, hydrothermal ventsand static stability of discharging thermal water in Lake Baikal (south-eastern Siberia)[J]. Bulletin-Centres de Recherches Exploration Production Elf-Aquitaine, 1993, 17(1): 53-65.
|
[65] |
Shaw G D, White E S, Gammons C H. Characterizing groundwater-lake interactions and its impact on lake water quality[J]. Journal of Hydrology, 2013, 492: 69-78. doi: 10.1016/j.jhydrol.2013.04.018
|
[66] |
Tóth J. A theoretical analysis of groundwater flow in small drainage basins[J]. Journal of Geophysical Research, 1963, 68(16): 4795-4812. doi: 10.1029/JZ068i016p04795
|
[67] |
Dabrowski J S, Charette M A, Mann P J, et al. Using radon to quantify groundwater discharge and methane fluxes to a shallow, tundra lake on the Yukon-Kuskokwim Delta, Alaska[J]. Biogeochemistry, 2020, 148(1): 69-89. doi: 10.1007/s10533-020-00647-w
|
[68] |
Levy Y, Burg A, Yechieli Y, et al. Displacement of springs and changes in groundwater flow regime due to the extreme drop in adjacent lake levels: The Dead Sea rift[J]. Journal of Hydrology, 2020, 587: 124928. doi: 10.1016/j.jhydrol.2020.124928
|
[69] |
Jarsjö J, Destouni G. Groundwater discharge into the Aral Sea after 1960[J]. Journal of Marine Systems, 2004, 47(1/4): 109-120.
|
[70] |
Han Z, Shi X, Jia K, et al. Determining the discharge and recharge relationships between lake and groundwater in Lake Hulun using hydrogen and oxygen isotopes and chloride ions[J]. Water, 2019, 11(2): 264. doi: 10.3390/w11020264
|
[71] |
孙晓梁, 杜尧, 邓娅敏, 等. 1996-2017年枯水期地下水排泄对洞庭湖水量均衡的贡献及其时间变异性[J]. 地球科学, 2021, 46(7): 2555-2564. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202107022.htm
Sun X L, Du Y, Deng Y M, et al. Contribution of groundwater discharge to water balance in Dongting Lake during the dry period from 1996 to 2017 and its temporal variability[J]. Earth Science, 2021, 46(7): 2555-2564(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202107022.htm
|
[72] |
Liu W, Xie C, Wang W, et al. Theimpact of permafrost degradation on lake changes in the Endorheic Basin on the Qinghai-Tibet Plateau[J]. Water, 2020, 12(5): 1287. doi: 10.3390/w12051287
|
[73] |
苏小四, 师亚坤, 董维红, 等. 潜流带生物地球化学特征研究进展[J]. 地球科学与环境学报, 2019, 41(3): 337-351. doi: 10.3969/j.issn.1672-6561.2019.03.008
Su X S, Shi Y K, Dong W H, et al. Progress in the biogeochemical characteristic of the hyporheic zone[J]. Journal of Earth Science and Environment, 2019, 41(3): 337-351(in Chinese with English abstract). doi: 10.3969/j.issn.1672-6561.2019.03.008
|
[74] |
Riuett M O, Buss S R, Morgan P, et al. Nitrate attenuation in groundwater: A review of biogeochemical controlling processes[J]. Water Research, 2008, 42(16): 4215-4232. doi: 10.1016/j.watres.2008.07.020
|
[75] |
Buss S R, Herbert A W, Morgan P, et al. A review of ammonium attenuation in soil and groundwater[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2004, 37(4): 347-359. doi: 10.1144/1470-9236/04-005
|
[76] |
Fellows C R, Brezonik P L. Fertilizer flux into two Florida lakes via seepage1[J]. Journal of Environmental Quality, 1981, 10(2): 174-177.
|
[77] |
Brock T D, Lee D R, Janes D, et al. Groundwater seepage as a nutrient source to a drainage lake: Lake Mendota, Wisconsin[J]. Water Research, 1982, 16(7): 1255-1263. doi: 10.1016/0043-1354(82)90144-0
|
[78] |
Corbett D R, Chanton J, Burnett W, et al. Patterns of groundwater discharge into Florida Bay[J]. Limnology & Oceanography, 1999, 44(4): 1045-1055.
|
[79] |
Valiela I, Costa J, Foreman K, et al. Transport of groundwater-borne nutrients from watersheds and their effects on coastal waters[J]. Biogeochemistry, 1990, 10(3): 177-197. doi: 10.1007/BF00003143
|
[80] |
Vanek V. Riparian zone as a source of phosphorus for a groundwater-dominated lake[J]. Water Research, 1991, 25(4): 409-418. doi: 10.1016/0043-1354(91)90077-4
|
[81] |
Dahm C N, Grimm, N B, Marmonier P, et al. Nutrient dynamics at the interface between surface waters and groundwaters[J]. Freshwater Biology, 1998, 40(3): 427-451. doi: 10.1046/j.1365-2427.1998.00367.x
|
[82] |
Bowen J L, Kroeger K D, Tomasky G, et al. A review of land-sea coupling by groundwater discharge of nitrogen to New England estuaries: Mechanisms and effects[J]. Applied Geochemistry, 2006, 22(1): 175-191.
|
[83] |
Spiteri C, Slomp C P, Charette M A, et al. Flow and nutrient dynamics in a subterranean estuary (Waquoit Bay, MA, USA): Field data and reactive transport modeling[J]. Geochimicaet Cosmochimica Acta, 2008, 72(14): 3398-3412. doi: 10.1016/j.gca.2008.04.027
|
[84] |
Ibánhez J S P, Leote C, Rocha C. Porewater nitrate profiles in sandy sediments hosting submarine groundwater discharge described by an advection-dispersion-reaction model[J]. Biogeochemistry, 2011, 103(1/3): 159-180.
|
[85] |
Ommen D A O, KidmoseJ, Karan S, et al. Importance of groundwater and macrophytes for the nutrient balance at oligotrophic Lake Hampen, Denmark[J]. Ecohydrology, 2012, 5(3): 286-296. doi: 10.1002/eco.213
|
[86] |
Keeney D R, Chen R L, Graetz D A. Importance of denitrification and nitrate reduction in sediments to the nitrogen budgets of lakes[J]. Nature, 1971, 233: 66-76. doi: 10.1038/233066a0
|
[87] |
Capone D G, Slater J M. Interannual patterns of water table height and groundwater derived nitrate in nearshore sediments[J]. Biogeochemistry, 1990, 10(3): 277-288. doi: 10.1007/BF00003148
|
[88] |
Reay W G, Gallagher D L, Simmons G M. Groundwater discharge and its impact on surface water quality in a chesapeake bay inlet1[J]. Jawra Journal of the American Water Resources Association, 2010, 28(6): 1121-1134.
|
[89] |
Vanek V. The interactions between lake and groundwater and their ecological significance[J]. Stygologia, 1987, 3(1): 1-23.
|
[90] |
Schafran G C, Driscoll C T. Porewater acid/base chemistry in near-shore regions of an acidic lake[J]. Biogeochemistry, 1990, 11(2): 131-150.
|
[91] |
Garcia-Solsona E, Garcia-Orellana J, Masqué P, et al. Groundwater and nutrient discharge through karstic coastal springs (Castelló, Spain)[J]. Biogeosciences, 2010, 7(9): 2625-2638. doi: 10.5194/bg-7-2625-2010
|
[92] |
Stoliker D L, Repert D A, Smith R L, et al. Hydrologic controls on nitrogen cycling processes and functional gene abundance in sediments of a groundwater flow-through lake[J]. Environmental Science & Technology, 2016, 50(7): 3649.
|
[93] |
Jasper G J. Uptake of phosphate by iron hydroxides during seepage in relation to development of groundwater composition in coastal areas[J]. Environmental Science & Technology, 1994, 28(4): 675-681.
|
[94] |
Griffioen J. Extent of immobilisation of phosphate during aeration of nutrient-rich, anoxic groundwater[J]. Journal of Hydrology, 2006, 320: 359-369. doi: 10.1016/j.jhydrol.2005.07.047
|
[95] |
McCobb T D, LeBlanc D R, Massey A J. Monitoring the removal of phosphate from ground water discharging through a Pond-Bottom permeable reactive barrier[J]. Groundwater Monitoring & Remediation, 2009, 29(2): 43-55.
|