Citation: | Zhang Renquan, Liang Xing, Jin Menggui, Luo Mingming. Preliminary discussion on the principle of minimum energy consumption rate controlling hierarchical groundwater flow systems[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 11-18. doi: 10.19509/j.cnki.dzkq.2022.0002 |
[1] |
Tóth J. Theoretical analysis of groundwater flow in small drainage basin[J]. Journal of Geophysical Research, 1963, 67(11): 4375-4387.
|
[2] |
Tóth J. Groundwater flow systems and modern hydrogeology: The story of a half century[C]//Anon. Proceedings of the International Symposium on Regional Groundwater Flow: Theory, Applications and Future Development, Xi'an, China. [S. l. ]: [s. n. ], 2013.
|
[3] |
Zhang R Q, Liang X, Jin M G. Tóthian theory is the paradigm of modern hydrogeology[C]//Anon. International Symposium on Hierarchical Flow Systems in Karst Regions. Budapest, Hungary. [S. l. ]: [s. n. ], 2013: 147.
|
[4] |
Haitjema H M, Mitchell-Bruker S. Are water tables a subdued replica of the topography?[J]. Groundwater, 2005, 43(6): 781-786.
|
[5] |
Liang X, Quan D, Jin M G, et al. Numerical simulation of groundwater flow patterns using flux as upper boundary[J]. Hydrological Process, 2013, 27(24): 3475-3483. doi: 10.1002/hyp.9477
|
[6] |
徐国宾, 练继建. 流体最小熵产生原理与最小能耗率原理[J]. 水利学报, 2003(5): 35-40. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200305006.htm
Xu G B, Lian J J. Theories of the minimum rate of energy dissipation and the minimum entropy production of flow[J]. Journal of Hydraulic Engineering, 2003(5): 35-40(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200305006.htm
|
[7] |
Yang C T, Song C C S. The theory of energy dissipation[J]. Journal of the Hydraulics Division, 1979, 1105(7): 769-784.
|
[8] |
黄文典, 王兆印. 长江中下游的河床纵剖面演变分析及预测[J]. 清华大学学报: 自然科学版, 2007, 47(12): 2131-2134. doi: 10.3321/j.issn:1000-0054.2007.12.011
Huang W D, Wang Z Y. Fluvial process forecasting for the middle and lower reaches of the Yangtze River[J]. Tsinghua Science and Technology: Natural Science Edition, 2007, 47(12): 2131-2134(in Chinese with English abstract). doi: 10.3321/j.issn:1000-0054.2007.12.011
|
[9] |
熊治平. 河流最小能耗原理及其应用译文集[M]. 武汉: 武汉大学出版社, 1988.
Xiong Z P. Principles and applications of minimum energy consumption in rivers[M]. Wuhan: Wuhan University Press, 1988(in Chinese).
|
[10] |
周冉. 最小能耗率原理及在河流动力学中的运用[J]. 科技与创新, 2014, 14: 119-120. https://www.cnki.com.cn/Article/CJFDTOTAL-KJYX201414091.htm
Zhou R. The Minimumrate of energy dissipation and the use of river dynamics[J]. Journal of Technology and Innovation, 2014, 14: 119-120(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KJYX201414091.htm
|
[11] |
吴介之. 在热力学的后方: 介绍美国数学家瑟林对热力学基础的改造[J]. 自然杂志, 1983, 6(12): 898-904, 953. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ198312007.htm
Wu J Z. In the rear of thermodynamics: Introduces the American mathematician Serling's transformation of the basis of thermodynamics[J]. Journal Nature, 1983, 6(12): 898-904, 953(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ198312007.htm
|
[12] |
徐国宾. 河流动力学中的最小能耗率原理[C]//第六届全国泥沙基本理论研究学术讨论会论文集. 郑州: 黄河水利出版社, 2005: 476-484.
Xu G B. Principle of minimum energy consumption rate in river dynamics[C]//Proceedings of the 6th National Symposium on Sediment Theory. Zhengzhou: Yellow River Conservancy Press, 2005: 476-484(in Chinese).
|
[13] |
Engelen G B, Jones G P. Developments in the analysis of groundwater flow systems[M]. Wallingford: IAHS Publication, 1986.
|
[14] |
张人权, 梁杏, 靳孟贵, 等. 水文地质学基础[M]. 第7版. 北京: 地质出版社, 2018.
Zhang R Q, Liang X, Jin M G, et al. Fundamentals of hydrogeology[M]. 7th Ed. Beijing: Geological Publishing House, 2018(in Chinese).
|
[15] |
广西水文地质工程地质队桂西找水组. 广西都安县地苏地下河系: 滨海、岛屿、岩溶区的地下水[M]. 北京: 地质出版社, 1974.
Hydrogeology and Engineering Geology Team in west Guangxi. Disu underground river system in Du'an, Guangxi: Groundwater in coast, island and karst areas[M]. Beijing: Geological Publishing House, 1974(in Chinese).
|
[16] |
梁杏, 沈仲智, 刘宇, 等. 一种多级次地下水流动系统演示仪: CN2008200667265[P]. 2008.
Liang X, Shen Z Z, Liu Y, et al. The utility model relates to a multilevel groundwater flow system demonstration instrumentr: CN2008200667265[P]. 2008(in Chinese).
|
[17] |
Liang X, Liu Y, Jin M G, et al. Direct observation of complex Tóthian groundwater flow systems in the laboratory[J], Hydrological Processes, 2010, 24: 3568-3573. doi: 10.1002/hyp.7758
|
[18] |
刘彦, 梁杏, 权董杰, 等. 改变入渗强度的地下水流模式实验[J]. 地学前缘, 2010, 17(6): 111-116. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201006015.htm
Liu Y, Liang X, Quan D J, et al. Experiments of groundwater flow patterns under changes of infiltration intensity[J]. Earth Science Frontiers, 2010, 17(6): 111-116(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201006015.htm
|
[19] |
Wang X S, Jiang X W, Wan L, et al. A new analytical solution of topography-driven flow in a drainage basin with depth-dependent anisotropy of permeability[J]. Water Resources Research, 2011, 47(9): W09603.
|
[20] |
Wang J Z, Jiang X W, Wan L, et al. An analytical study on groundwater flow in drainage basins with horizontal wells[J]. Hydrogeology Journal, 2014, 22(7): 1625-1638. doi: 10.1007/s10040-014-1146-9
|
[21] |
Bresciani E, Gleeson T, Goderniaux P, et al. Groundwater flow systems theory: Research challenges beyond the specified-head top boundary condition[J]. Hydrogeology Journal, 2016, 24: 1087-1090. doi: 10.1007/s10040-016-1397-8
|