Volume 41 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
Wan Li, Wang Xusheng, Jiang Xiaowei. Advances in dynamics of groundwater circulation patterns[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 19-29. doi: 10.19509/j.cnki.dzkq.2022.0003
Citation: Wan Li, Wang Xusheng, Jiang Xiaowei. Advances in dynamics of groundwater circulation patterns[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 19-29. doi: 10.19509/j.cnki.dzkq.2022.0003

Advances in dynamics of groundwater circulation patterns

doi: 10.19509/j.cnki.dzkq.2022.0003
  • Received Date: 31 Oct 2021
    Available Online: 02 Mar 2022
  • As an essential part of hydrological cycle, groundwater circulation is a process including groundwater recharge, flow and discharge, which has been the primary research topic in hydrogeology.The spatial patterns of groundwater circulation are composed of different structure elements.There are two partitioning methods: the media structure determined from aquifer properties and the dynamic patterns determined according to the seepage field.A groundwater flow system (GFS) roles as a groundwater circulation cell within the concept of the dynamic patterns.In the last decade, significant advances have been achieved in the theory of GFSs, revealing groundwater circulation patterns in more comprehensive and deep ways.Studies on GFSs between parallel streams discovered that the top of water table is not the accurate position of groundwater divide.At the basin scale, the integrated impacts of the vale landform, precipitation infiltration rate, depth dependent permeability and basin thickness on the undulating shape of water table and groundwater circulation patterns were systematically investigated, with preliminary discovery on the evolution characteristics of dynamic patterns in periodicity and tendencies.Partitioning methods for three dimensional groundwater circulation cells were developed, according to fine-grained identification of paths or statistic analysis on residence times along a huge number of streamlines.For the hydrogeological effect, it has been found that the groundwater circulation patterns significantly influence the distribution of groundwater age.As an indication of hydraulic connection between recharge and discharge zones, groundwater circulation patterns play a key role in the geochemical processes at the basin scale and eco-hydrological processes at the catchment scale, which should be studied with more attentions on the dynamic and evolution behaviors of the three-dimensional groundwater circulation.

     

  • loading
  • [1]
    沈照理, 刘光亚, 杨成田, 等. 水文地质学[M]. 北京: 科学出版社, 1985.

    Shen Z L, Liu Y G, Yang C T, et al. Hydrogeology[M]. Beijing: Science Press, 1985(in Chinese).
    [2]
    林学钰, 廖资生, 赵勇胜, 等. 现代水文地质学[M]. 北京: 地质出版社, 2005.

    Lin X Y, Liao Z S, Zhao Y S, et al. Advances in hydrogeology[M]. Beijing: Geological Publishing House, 2005(in Chinese).
    [3]
    Duffy C J, Al-Hassan S. Groundwater circulation in a closed desert basin: Topographic scaling and climatic forcing[J]. Water Resources Research, 1988, 24(10): 1675-1688. doi: 10.1029/WR024i010p01675
    [4]
    Manning A H, Solomon D K. An integrated environmental tracer approach to characterizing groundwater circulation in a mountain block[J]. Water Resources Research, 2005, 41(12): 1944-1973.
    [5]
    Frisbee M D, Tolley D G, Wilson J L. Field estimates of groundwater circulation depths in two mountainous watersheds in the western U.S. and the effect of deep circulation on solute concentrations in streamflow[J]. Water Resources Research, 2017, 53(4): 2693-2715. doi: 10.1002/2016WR019553
    [6]
    张宏仁. 地下水水力学的发展[M]. 北京: 地质出版社, 1992.

    Zhang H R. Development of groundwater hydraulics[M]. Beijing: Geological Publishing House, 1992(in Chinese).
    [7]
    Tóth J. A theoretical analysis of groundwater flow in small drainage basins[J]. Journal of Geophysics Research, 1963, 68(16): 4795-4812. doi: 10.1029/JZ068i016p04795
    [8]
    张人权, 梁杏, 靳孟贵, 等. 水文地质学基础[M]. 第7版. 北京: 地质出版社, 2018.

    Zhang R Q, Liang X, Jin M G, et al. Fundamentals of hydrogeology[M]. 7th Edition. Beijing: Geological Publishing House, 2018(in Chinese).
    [9]
    梁杏, 张人权, 牛宏, 等. 地下水流系统理论与研究方法的发展[J]. 地质科技情报, 2012, 31(5): 143-151. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201205020.htm

    Liang X, Zhang R Q, Niu H, et al. Development of the theory and research method of groundwater flow system[J]. Geological Science and Technology Information, 2012, 31(5): 143-151(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201205020.htm
    [10]
    蒋小伟, 万力, 王旭升. 区域地下水流理论进展[M]. 北京: 地质出版社, 2013.

    Jiang X W, Wan L, Wang X S. Advances in the theory of regional groundwater flow[M]. Beijing: Geological Publishing House, 2013(in Chinese).
    [11]
    梁杏, 张人权, 靳孟贵. 地下水流系统: 理论、应用、调查[M]. 北京: 地质出版社, 2015.

    Liang X, Zhang R Q, Jin M G. Groundwater flow systems: Theory, application and investigation[M]. Beijing: Geological Publishing House, 2015(in Chinese).
    [12]
    McWhorter D B, Sunada D K. Groundwater hydrology and hydraulics[M]. Fort Collins: Water Resources Publications, 1977: 24-53.
    [13]
    Bear J. Hydraulics of groundwater[M]. New York: McGraw-Hill, 1979.
    [14]
    薛禹群, 吴吉春. 地下水动力学[M]. 第3版. 北京: 地质出版社, 2010.

    Xue Y Q, Wu J C. Groundwater hydraulics[M]. 3th Edition. Beijing: Geological Publishing House, 2010(in Chinese).
    [15]
    陈崇希, 林敏, 成建梅. 地下水动力学[M]. 第5版. 北京: 地质出版社, 2011.

    Chen C X, Lin M, Cheng J M. Groundwater hydraulics[M]. 5th Edition. Beijing: Geological Publishing House, 2011(in Chinese).
    [16]
    王旭升, 万力. 地下水运动方程[M]. 北京: 地质出版社, 2011.

    Wang X S, Wan L. Equations of groundwater hydraulics[M]. Beijing: Geological Publishing House, 2011(in Chinese).
    [17]
    Wang X S, Wan Li, Jiang X W, et al. Identifying three-dimensional nested groundwater flow systems in a Tóthian basin[J]. Advances in Water Resources, 2017, 108: 139-156. doi: 10.1016/j.advwatres.2017.07.016
    [18]
    Engelen G B, Kloosterman F H. Hydrological systems analysis: Methods and applications[M]. Dordrecht: Kluwer Academic Publishers, 1996.
    [19]
    水利部水利水电规划设计总院. 中国水资源及其开发利用调查评价[M]. 北京: 中国水利水电出版社, 2004.

    General Institute of Water Resources and Hydropower Planning and Design, Ministry of Water Resources. Investigation and assessment on water resources and its exploitation and utilization in China[M]. Beijing: China Water Power Press, 2004(in Chinese).
    [20]
    Somers L D, McKenzie J M. A review of groundwater in high mountain environments[J]. WIREs Water, 2020, 7: 1-27.
    [21]
    Bear J. Dynamics of fluids in porous media[M]. New York: Elsevier, 1972.
    [22]
    Hubbert M K. The theory of ground-water motion[J]. Journal of Geology, 1940, 48: 785-944. doi: 10.1086/624930
    [23]
    Han P F, Wang X S, Wan Li, et al. The exact groundwater divide on water table between two rivers: A fundamental model investigation[J]. Water, 2019, 11(4): 1-10.
    [24]
    Li R, Wang X S. Analytical investigation of the exact groundwater divide between rivers beyond the Dupuit- Forchheimer approximation[J]. Hydrological Processes, 2021, 35: 1-16. doi: 10.1002/hyp.13809
    [25]
    Freeze R A, Witherspoon P A. Theoretical analysis of regional groundwater flow: 2. Effect of water-table configuration and subsurface permeability variation[J]. Water Resources Research, 1967, 3(2): 623-634. doi: 10.1029/WR003i002p00623
    [26]
    万力, 蒋小伟, 王旭升. 含水层的一种普遍规律: 渗透系数随深度衰减[J]. 高校地质学报, 2010, 16(1): 7-12. doi: 10.3969/j.issn.1006-7493.2010.01.002

    Wan L, Jiang X W, Wang X S. A common regularity of aquifers: The decay in hydraulic conductivity with depth[J]. Geological Journal of China Universities, 2010, 16(1): 7-12(in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2010.01.002
    [27]
    Jiang X W, Wang X S, Wan L. Semi-empirical equations for the systematic decrease in permeability with depth in porous and fractured media[J]. Hydrogeology Journal, 2010, 18(4): 839-850. doi: 10.1007/s10040-010-0575-3
    [28]
    Kuang X, Jiao J J. An integrated permeability-depth model for Earth's crust[J]. Geophysical Research Letters, 2014, 41(21): 7539-7545. doi: 10.1002/2014GL061999
    [29]
    Jiang X W, Wan L, Wang X S, et al. Effect of exponential decay in hydraulic conductivity with depth on regional groundwater flow[J]. Geophysical Research Letters, 2009, 36(24): 1-4.
    [30]
    Jiang X W, Wang X S, Wan L, et al. An analytical study on stagnation points in nested flow systems in basins with depth-decaying hydraulic conductivity[J]. Water Resources Research, 2011, 47(1): 1-16.
    [31]
    Wang X S, Jiang X W, Wan L, et al. A new analytical solution of topography-driven flow in a drainage basin with depth-dependent anisotropy of permeability[J], Water Resources Research, 2011, 47(9): 1-5.
    [32]
    Liang X, Liu Y, Jin M G, et al. Direct observation of complex Tóthian groundwater flow systems in the laboratory[J]. Hydrological Processes, 2010, 24: 3568-3573. doi: 10.1002/hyp.7758
    [33]
    梁杏, 牛宏, 张人权, 等. 盆地地下水流模式及其转化与控制因素[J]. 地球科学: 中国地质大学学报, 2012, 37(2): 269-273. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201202011.htm

    Liang X, Niu H, Zhang R Q, et al. Basinal groundwater flow patterns and their transformation and dominant factors[J]. Earth Science: Journal of China University of Geosciences, 2012, 37(2): 269-273(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201202011.htm
    [34]
    Liang X, Quan D, Jin M G, et al. Numerical simulation of groundwater flow patterns using flux as upper boundary[J]. Hydrological Processes, 2013, 27: 3475-3483. doi: 10.1002/hyp.9477
    [35]
    Wang J Z, Jiang X W, Wan L, et al. An analytical study on groundwater flow in drainage basins with horizontal wells[J]. Hydrogeology Journal, 2014, 22(7): 1625-1638. doi: 10.1007/s10040-014-1146-9
    [36]
    Vandenberg A. Regional groundwater motion in response to an oscillating water table[J]. Journal of Hydrology, 1980, 47: 333-348. doi: 10.1016/0022-1694(80)90102-X
    [37]
    Zhao K Y, Jiang X W, Wang X S, et al. An analytical study on nested flow systems in a Tóthian Basin with a periodically changing water table[J]. Journal of Hydrology, 2018, 556: 813-823. doi: 10.1016/j.jhydrol.2016.09.051
    [38]
    Dai X, Xie Y, Simmons C T, et al. Understanding topography-driven groundwater flow using fully-coupled surface-water and groundwater modeling[J]. Journal of Hydrology, 2021, 594: 1-12.
    [39]
    张人权, 梁杏, 靳孟贵. 末次盛冰期以来河北平原第四系地下水流系统的演变[J]. 地学前缘, 2013, 20(3): 217-226. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201303026.htm

    Zhang R Q, Liang X, Jin M G. The evolution of groundwater flow systems in Quaternary of the Hebei Plain since the Last Glacial Maximum[J]. Geoscience Frontiers, 2013, 20(3): 217-226(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201303026.htm
    [40]
    Wörman A, Packman A I, Marklund L, et al. Exact three-dimensional spectral solution to surface-groundwater interactions with arbitrary surface topography[J]. Geophysical Research Letters, 2006, 33(7): 1-4.
    [41]
    Marklund L, Wörman A. The use of spectral analysis-based exact solutions to characterize topography-controlled groundwater flow[J]. Hydrogeology Journal, 2011, 19(8): 1531-1543. doi: 10.1007/s10040-011-0768-4
    [42]
    Wang J Z, Jiang X W, Zhang Z Y, et al. An analytical study on three-dimensional versus two-dimensional water table-induced flow patterns in a Tóthian basin[J]. Hydrological Processes, 2017, 31: 4006-4018. doi: 10.1002/hyp.11317
    [43]
    Winter T C. Numerical simulation of steady state three-dimensional groundwater flow near lakes[J]. Water Resources Research, 1978, 14(2): 245-254. doi: 10.1029/WR014i002p00245
    [44]
    周鹏宇, 蒋小伟, 万力, 等. 三维Tóth型盆地的驻线及其对多级次水流系统的控制[J]. 地质科技通报, 2022, 41(1): 203-208. doi: 10.19509/j.cnki.dzkq.2021.0017

    Zhou P Y, Jiang X W, Wan L, et al. Stagnation lines and its control of nested groundwater flow systems in three-dimensional Tóthian basins[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 203-208(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0017
    [45]
    Zijl W. Numerical simulations based on stream functions and velocities in three-dimensional groundwater flow[J]. Journal of Hydrology, 1986, 85(3/4): 349-365.
    [46]
    Zijl W, Brouwer G K, Waardenburg F D E, et al. FLOSA: A tool for regional three-dimensional flow systems analysis[C]//Jousma G, Bear J, Haimes Y Y, et al. Groundwater contamination: Use of models in decision-making. Amsterdam: Springer Netherlands, 1989.
    [47]
    Haitjema H M. On the residence time distribution in idealized groundwater sheds[J]. Journal of Hydrology, 1995, 172(1/4): 127-146.
    [48]
    Wörman A, Packman A I, Marklund L, et al. Fractal topography and subsurface water flows from fluvial bedforms to the continental shield[J]. Geophysical Research Letters, 2007, 34(7): 1-5.
    [49]
    Basu N B, Jindal P, Schilling K E, et al. Evaluation of analytical and numerical approaches for the estimation of groundwater travel time distribution[J]. Journal of Hydrology, 2012, 475: 65-73. doi: 10.1016/j.jhydrol.2012.08.052
    [50]
    Goderniaux P, Davy P, Bresciani E, et al. Partitioning a regional groundwater flow system into shallow local and deepregional flow compartments[J]. Water Resources Research, 2013, 49(4): 2274-2286. doi: 10.1002/wrcr.20186
    [51]
    Wang J Z, Wörman A, Etienne B, et al. On the use of late-time peaks of residence time distributions for the characterization of hierarchically nested groundwater flow systems[J]. Journal of Hydrology, 2016, 543: 47-58. doi: 10.1016/j.jhydrol.2016.04.034
    [52]
    Tóth J. Groundwater as a geologic agent: An overview of the causes, processes, and manifestations[J]. Hydrogeology Journal, 1999, 7(1): 1-14. doi: 10.1007/s100400050176
    [53]
    约瑟夫·托特. 重力驱动地下水流系统理论及其应用[M]. 张人权, 梁杏, 靳孟贵, 等译. 北京: 地质出版社, 2015.

    Tóth J. Gravitational systems of groundwater flow: Theory, evaluation, utilization[M]. Zhang R Q, Liang X, Jin M G, et al. (Trans. )Beijing: Geological Publishing House, 2015(in Chinese).
    [54]
    Jiang X W, Wan L, Cardenas M B, et al. Simultaneous rejuvenation and aging of groundwater in basins due to depth-decaying hydraulic conductivity and porosity[J]. Geophysical Research Letters, 2010, 37(5): 1-4.
    [55]
    Jiang X W, Wan L, Ge S, et al. A quantitative study on accumulation of age mass around stagnation points in nested flow systems[J]. Water Resources Research, 2012, 48(12): 1-14.
    [56]
    Zhang J, Wang X S, Yin L, et al. Inflection points on groundwater age and geochemical profiles along wellbores light up hierarchically nested flow systems[J]. Geophysical Research Letters, 2021, 48(16): e2020GL092337.
    [57]
    Gleeson T, Manning A H. Regional groundwater flow in mountainous terrain: Three-dimensional simulations of topographic and hydrogeologic controls[J]. Water Resources Research, 2008, 44: 1-16.
    [58]
    Genereux D P, Jordan M T, Carbonell D. A paired-watershed budget study to quantify interbasin groundwater flow in a lowland rain forest, Costa Rica[J]. Water Resources Research, 2005, 41(4): 1-17.
    [59]
    Bouaziz L, Weerts A, Schellekens J, et al. Redressing the balance: Quantifying net intercatchment groundwater flows[J]. Hydrology & Earth System Sciences, 2018, 22: 6415-6434.
    [60]
    Fan Y. Are catchments leaky?[J]. WIREs Water, 2019, 6: 1-25.
    [61]
    梁杏, 张婧玮, 蓝坤, 等. 江汉平原地下水化学特征及水流系统分析[J]. 地质科技通报, 2020, 39(1): 21-33. doi: 10.19509/j.cnki.dzkq.2020.0103

    Liang X, Zhang J W, Lan K, et al. Hydrochemical characteristics of groundwater and analysis of groundwater flow systems in Jianghan Plain[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 21-33(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0103
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1068) PDF Downloads(197) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return