Volume 41 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
Mao Xumei, Ye Jianqiao, Dong Yaqun, Shi Zide. Geothermal driving force: A new additional non-gravity action driving the migration of geothermal water in the Xinzhou geothermal field of Yangjiang, Guangdong[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 137-145. doi: 10.19509/j.cnki.dzkq.2022.0014
Citation: Mao Xumei, Ye Jianqiao, Dong Yaqun, Shi Zide. Geothermal driving force: A new additional non-gravity action driving the migration of geothermal water in the Xinzhou geothermal field of Yangjiang, Guangdong[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 137-145. doi: 10.19509/j.cnki.dzkq.2022.0014

Geothermal driving force: A new additional non-gravity action driving the migration of geothermal water in the Xinzhou geothermal field of Yangjiang, Guangdong

doi: 10.19509/j.cnki.dzkq.2022.0014
  • Received Date: 01 Nov 2021
    Available Online: 02 Mar 2022
  • The "nested multilevel flow system" summarized by Tóth and the gravity driven groundwater flow system theory summarized by Zhang Renquan et al are the important theoretical basis for groundwater migration.Groundwater flow may be affected by gravitational potential, compaction potential and tectonic compression force.However, the anomalous phenomenon that the groundwater recharge area is lower than the groundwater drainage area is found in the convective hydrothermal system.As the temperature rises, the density of geothermal water decreases and the pressure increases, and the actual pressure head of geothermal water increases, which is the physical basis for this abnormal phenomenon.This paper defines the additional pressure head as "geothermal driving force", which is related to the temperature, salinity and viscosity of geothermal water.And we propose a quantitative calculation method.In the case of Xinzhou geothermal field in Yangjiang, Guangdong Province, the starting point of the geothermal driving force is located at the deepest part of the geothermal water cycle of 4.34 km, where the standard head of the geothermal driving force generated by temperature rise is +351.59 m, and the standard head of the geothermal driving force generated by salinity increase is -2.78 m, and the standard head of total geothermal driving force is +348.81 m.The higher the geothermal water temperature is, the greater the geothermal driving force is.The greater the salinity, the smaller the geothermal driving force.The additional supporting effect of geothermal driving force can accelerate the circulation of groundwater in hydrothermal system.

     

  • loading
  • [1]
    Tóth J. Cross-formation gravity-flow of groundwater: A mechanism of the transport and accumulation of petroleum (The generalized hydraulic theory of petroleum migration)[J]. Problems of Petroleum Migration: AAPG Studies in Geology, 1980, 10: 121-167.
    [2]
    Garven G, Freeze R A. Theoretical analysis of the role of groundwater flow in the genesis of stratabound ore deposits; 1, Mathematical and numerical model[J]. American Journal of Science, 1984, 284(10): 1085-1124. doi: 10.2475/ajs.284.10.1085
    [3]
    Engelen G B, Jones G P. Developments in the analysis of groundwater flow systems[M]. Wallingford, UK: International Association of Hydrological Sciences, 1986.
    [4]
    张人权, 梁杏, 靳孟贵. 水文地质学基础[M]. 第7版. 北京: 地质出版社, 2018.

    Zhang R Q, Liang X, Jin M G, et al. Fundamentals of hydrogeology[M]. 7th Edition. Beijing: Geological Publishing House, 2018(in Chinese).
    [5]
    梁杏, 张人权, 靳孟贵. 地下水系统: 理论、应用、调查[M]. 北京: 地质出版社, 2015.

    Liang X, Zhang R Q, Jin M G, et al. Groundwater systems: Theory, application and investigation[M]. Beijing: Geological Publishing House, 2015(in Chinese).
    [6]
    约瑟夫·托特. 重力驱动地下水流系统理论及其应用[M]. 张人权, 梁杏, 靳孟贵, 等译. 北京: 地质出版社, 2015. Tó

    th J. Gravity driven groundwater flow system theory and its application[M]. Zhang R Q, Liang X, Jin M G, et al(Trans). Beijing: Geological Publishing House, 2011(in Chinese).
    [7]
    Freeze R A, Witherspoon P A. Theoretical analysis of regional groundwater flow: 2. Effect of water-table configuration and subsurface permeability variation[J]. Water Resources Research, 1967, 3(2): 623-634. doi: 10.1029/WR003i002p00623
    [8]
    Engelen G B, Kloosterman F H. Hydrological systems analysis: Methods and applications[M]. Berlin: Springer Science & Business Media, 2012.
    [9]
    Jiang X W, Wan L, Cardenas M B, et al. Simultaneous rejuvenation and aging of groundwater in basins due to depth-decaying hydraulic conductivity and porosity[J]. Geophysical Research Letters, 2010, 37(5): 1-5.
    [10]
    李皓婷. 西藏昂仁县典型地热显示区地下热水化学特征及物源分析[D]. 石家庄: 河北地质大学, 2020.

    Li H T. Chemical characteristics and provenance analysis of geothermal water in a typical geothermal display area in Angren County, Tibet[D]. Shijiazhuang: Hebei GEO University, 2020(in Chinese with English abstract).
    [11]
    高宗军. 地下水流系统分异的试验演示及其意义[J]. 山东科技大学学报: 自然科学版, 2013, 32(2): 17-24. doi: 10.3969/j.issn.1672-3767.2013.02.003

    Gao Z J. Experimental demonstration and significance of groundwater flow system differentiation[J]. Journal of Shandong University of Science and Technology: Natrual Science Edition, 2013, 32(2): 17-24(in Chinese with English abstract). doi: 10.3969/j.issn.1672-3767.2013.02.003
    [12]
    Xu T, Yuan Y, Jia X, et al. Prospects of power generation from an enhanced geothermal system by water circulation through two horizontal wells: A case study in the Gonghe Basin, Qinghai Province, China[J]. Energy, 2018, 148: 196-207. doi: 10.1016/j.energy.2018.01.135
    [13]
    Tóth Á, Galsa A, Mádl-Szönyi J. Significance of basin asymmetry and regional groundwater flow conditions in preliminary geothermal potential assessment: Implications on extensional geothermal plays[J]. Global and Planetary Change, 2020, 195: 1-47.
    [14]
    高宗军, 刘永贵. 地下水运动的热驱动机理[J]. 地下水, 2014, 36(2): 7-9. doi: 10.3969/j.issn.1004-1184.2014.02.003

    Gao Z J, Liu Y G. Research on application of thermally driven in groundwater movement[J]. Groundwater, 2014, 36(2): 7-9(in Chinese with English abstract). doi: 10.3969/j.issn.1004-1184.2014.02.003
    [15]
    Ndikubwimana I, Mao X, Zhu D, et al. Geothermal evolution of deep parent fluid in western Guangdong, China: Evidence from water chemistry, stable isotopes and geothermometry[J]. Hydrogeology Journal, 2020, 28(8): 2947-2961. doi: 10.1007/s10040-020-02222-x
    [16]
    Mao X, Zhu D, Ndikubwimana I, et al. The mechanism of high-salinity thermal groundwater in Xinzhou geothermal field, South China: Insight from water chemistry and stable isotopes[J]. Journal of Hydrology, 2021, 593: 125889. doi: 10.1016/j.jhydrol.2020.125889
    [17]
    汪集旸, 熊亮萍, 庞忠和, 等. 中低温对流型地热系统[M]. 北京: 科学出版社, 1993.

    Wang J Y, Xiong L P, Pang Z H, et al. Medium and low temperature convection type geothermal system[M]. Beijing: Science Press, 1993(in Chinese).
    [18]
    Moeck I S. Catalog of geothermal play types based on geologic controls[J]. Renewable and Sustainable Energy Reviews, 2014, 37: 867-882. doi: 10.1016/j.rser.2014.05.032
    [19]
    王贵玲, 蔺文静. 我国主要水热型地热系统形成机制与成因模式[J]. 地质学报, 2020, 94(7): 1923-1937. doi: 10.3969/j.issn.0001-5717.2020.07.002

    Wang G L, Lin W J. Main hydro-geothermal systems and their genetic models in China[J]. Acta Geologica Sinica, 2020, 94(7): 1923- 1937(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2020.07.002
    [20]
    Zeng Y, Zhan J, Wu N, et al. Numerical investigation of electricity generation potential from fractured granite reservoir by water circulating through three horizontal wells at Yangbajing geothermal field[J]. Applied Thermal Engineering, 2016, 104: 1-15. doi: 10.1016/j.applthermaleng.2016.03.148
    [21]
    Wang Y, Pang Z, Hao Y, et al. A revised method for heat flux measurement with applications to the fracture-controlled Kangding geothermal system in the eastern Himalayan Syntaxis[J]. Geothermics, 2019, 77: 188-203. doi: 10.1016/j.geothermics.2018.09.005
    [22]
    Zhang C, Jiang G, Jia X, et al. Parametric study of the production performance of an enhanced geothermal system: A case study at the Qiabuqia geothermal area, Northeast Tibetan Plateau[J]. Renewable Energy, 2018, 132: 959-978.
    [23]
    Kell G S. Effects of isotopic composition, temperature, pressure, and dissolved gases on the density of liquid water[J]. Journal of Physical and Chemical Reference Data, 1977, 6(4): 1109-1131. doi: 10.1063/1.555561
    [24]
    Tóth J. Gravitational systems of groundwater flow: Theory, evaluation and utilization[M]. Cambridge: Cambridge University Press, 2009.
    [25]
    Kiryukhin A V, Vorozheikina L A, Voronin P О, et al. Thermal and permeability structure and recharge conditions of the low temperature Paratunsky geothermal reservoirs in Kamchatka, Russia[J]. Geothermics, 2017, 70: 47-61. doi: 10.1016/j.geothermics.2017.06.002
    [26]
    Collard N, Peiffer L, Taran Y. Heat and fluid flow dynamics of a stratovolcano: The Tacaná Volcanic Complex, Mexico-Guatemala[J]. Journal of Volcanology and Geothermal Research, 2020, 400: 106916. doi: 10.1016/j.jvolgeores.2020.106916
    [27]
    Lu G, Wang X, Li F, et al. Deep geothermal processes acting on faults and solid tides in coastal Xinzhou geothermal field, Guangdong, China[J]. Physics of the Earth and Planetary Interiors, 2017, 264: 76-88. doi: 10.1016/j.pepi.2016.12.004
    [28]
    Mao X, Wang H, Feng L. 14C age reassessment of groundwater from the discharge zone due to cross-flow mixing in the deep confined aquifer[J]. Journal of Hydrology, 2018, 560: 572-581. doi: 10.1016/j.jhydrol.2018.03.052
    [29]
    Mao X, Wang H, Feng L. Impact of additional dead carbon on the circulation estimation of thermal springs exposed from deep-seated faults in the Dongguan Basin, southern China[J]. Journal of Volcanology and Geothermal Research, 2018, 361: 1-11. doi: 10.1016/j.jvolgeores.2018.08.002
    [30]
    Mao X, Wang Y, Yuan J. The indication of geothermal events by helium and carbon isotopes of hydrothermal fluids in South China[J]. Procedia Earth and Planetary Science, 2013, 7: 550-553. doi: 10.1016/j.proeps.2013.03.163
    [31]
    Mao X, Wang Y, Zhan H, et al. Geochemical and isotopic characteristics of geothermal springs hosted by deep-seated faults in Dongguan Basin, southern China[J]. Journal of Geochemical Exploration, 2015, 158: 112-121. doi: 10.1016/j.gexplo.2015.07.008
    [32]
    Sorey M L. Numerical modeling of liquid geothermal systems[M]. Washington: US Government Printing Office, 1978.
    [33]
    薛卉, 舒彪, 陈科平, 等. CO2基增强型地热系统中流体-花岗岩相互作用研究进展及展望[J]. 地质科技通报, 2021, 40(3): 45-53. doi: 10.19509/j.cnki.dzkq.2021.0021

    Xue H, Shu B, Chen K P, et al. Research progress of luid-granite interation CO2 basenhancedgeothermal system[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 45-53. doi: 10.19509/j.cnki.dzkq.2021.0021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(374) PDF Downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return