Volume 41 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
Niu Hong, Wei Xiaoya, Lin Jingjing, Wang Junzhi, Ni Shengnan, Li Shuzi. Experimental simulation of salt transport in hierarchically nested groundwater flow systems[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 177-182. doi: 10.19509/j.cnki.dzkq.2022.0019
Citation: Niu Hong, Wei Xiaoya, Lin Jingjing, Wang Junzhi, Ni Shengnan, Li Shuzi. Experimental simulation of salt transport in hierarchically nested groundwater flow systems[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 177-182. doi: 10.19509/j.cnki.dzkq.2022.0019

Experimental simulation of salt transport in hierarchically nested groundwater flow systems

doi: 10.19509/j.cnki.dzkq.2022.0019
  • Received Date: 26 Oct 2021
    Available Online: 02 Mar 2022
  • Groundwater age and groundwater residence time contain important information about groundwater circulation and evolutionary processes, and have been widely used in the study of groundwater circulation patterns in basins.In this paper, we simulated a three-stage flow system model through a multi-stage groundwater flow system demonstrator, and simulated the groundwater age distribution and groundwater residence time distribution based, and found that the bottom of the basin, the downstream of the regional flow, and the basin retention area responded the latest.The local flow system in the shallow part has relatively low concentration values after stabilization, the intermediate flow system is also relatively low compared to the regional flow system in the deep part, and the stagnant zone has relatively large concentration values due to salt accumulation.The groundwater age distribution curves are single-peaked, and the circulation time of the regional flow system is greater than that of the intermediate flow system than that of the local flow system.The residence time distribution monitored in the discharge zones shows that different levels of recharge will produce early, middle and late peaks, and the peaks correspond exactly to the level of the groundwater flow system.It can be judged from the peaks in the discharge zones that the groundwater is recharged from the local, intermediate or regional flow system, and thus the source of contaminants can be determined.The present research results have some significance for the evolution of groundwater circulation and the improvement of groundwater flow system theory.

     

  • loading
  • [1]
    Alley W M, Healy R W, LaBaugh J W, et al. Flow and storage in groundwater systems[J]. Science, 2002, 296: 1985-1990. doi: 10.1126/science.1067123
    [2]
    梁杏, 张婧玮, 蓝坤, 等. 江汉平原地下水化学特征及水流系统分析[J]. 地质科技通报, 2020, 39(1): 21-33. doi: 10.19509/j.cnki.dzkq.2020.0103

    Liang X, Zhang J W, Lan K, et al. Hydrochemical characteristics of groundwater and analysis of groundwater flow systems in Jianghan Plain[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 21-33(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0103
    [3]
    孙自永, 王俊友, 葛孟琰, 等. 基于水稳定同位素的地下水型陆地植被识别: 研究进展、面临挑战及未来研究展望[J]. 地质科技通报, 2020, 39(1): 11-20. doi: 10.19509/j.cnki.dzkq.2020.0102

    Sun Z Y, Wang J Y, Ge M Y, et al. Isotopic approaches to identify groundwater dependent terrestrial vegetation: Progress, challenges, and prospects for future research[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 11-20(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0102
    [4]
    江欣悦, 李静, 郭林, 等. 豫北平原浅层地下水化学特征与成因机制[J]. 地质科技通报, 2021, 40(5): 290-300. doi: 10.19509/j.cnki.dzkq.2021.0511

    Jiang X Y, Li J, Guo L, et al. Chemical characteristics and formation mechanism of shallow groundwater in the northern Henan Plain[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 290-300(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0511
    [5]
    Tóth J. A theoretical analysis of groundwater flow in small drainage basins[J]. Journal of Geophysical Research, 1963, 68(16): 4795-4812. doi: 10.1029/JZ068i016p04795
    [6]
    Haitiema H M, Sherry M B. Are water tables a subdued replica of the topography?[J]. Groundwater, 2005, 43(6): 781-786.
    [7]
    Gill B, Webb J, Stott K, et al. Economic, social and resource management factors influencing groundwater trade: Evidence from Victoria, Australia[J]. Journal of Hydrology, 2017, 550: 253-267. doi: 10.1016/j.jhydrol.2017.04.055
    [8]
    Gejl R N, Rygaard M, Henriksen H J, et al. Understanding the impacts of groundwater abstraction through long-term trends in water quality[J]. Water Research, 2019, 156: 241-251. doi: 10.1016/j.watres.2019.02.026
    [9]
    Shrestha S, Semkuyu D J, Pandey V P, et al. Assessment of groundwater vulnerability and risk to pollution in Kathmandu Valley, Nepal[J]. Science of the Total Environment, 2016, 556: 23-35. doi: 10.1016/j.scitotenv.2016.03.021
    [10]
    Zijl W, Mustafa E R. The evolution from an unsteady to a steady mixing zone between two groundwater flow systems with different concentrations[J]. Alexandria Engineering Journal, 2019, 58(2): 725-731. doi: 10.1016/j.aej.2019.06.003
    [11]
    蒋小伟, 万力, 王旭升, 等. 盆地地下水年龄空间分布规律[J]. 水文地质工程地质, 2012, 39(4): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201204003.htm

    Jiang X W, Wan L, Wang X S, et al. Distribution of groundwater age in drainage basins[J]. Hydrogeology & Engineering Geology, 2012, 39(4): 1-6(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201204003.htm
    [12]
    王俊智. 盆地多级次地下水流系统识别方法研究[D]. 北京: 中国地质大学(北京), 2015.

    Wang J Z. A methodological study on the identification of hierarchically nested groundwater flow systems in drainage basins[D]. Beijing: China University of Geosciences(Beijing), 2015(in Chinese with English abstract).
    [13]
    Liang X, Liu Y, Jin M G, et al. Direct observation of complex Tóthian groundwater flow systems in the laboratory[J]. Hydrological Processes, 2010, 24(24): 3568-3573. doi: 10.1002/hyp.7758
    [14]
    梁杏, 牛宏, 张人权, 等. 盆地地下水流模式及其转化与控制因素[J]. 地球科学: 中国地质大学学报, 2012, 37(2): 269-275. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201202011.htm

    Liang X, Niu H, Zhang R Q, et al. Basinal groundwater flow patterns and their transformation and dominant factors[J]. Earth Science: Journal of China University of Geosciences, 2012, 37(2): 269-275(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201202011.htm
    [15]
    Liang X, Quan D J, Jin M G, et al. Numerical simulation of groundwater flow patterns using flux as upper boundary[J]. Hydrological Processes, 2013, 27(24): 3475-3483. doi: 10.1002/hyp.9477
    [16]
    Wang J Z, Wörman A, Bresciani E, et al. On the use of late-time peaks of residence time distributions for the characterization of hierarchically nested groundwater flow systems[J]. Journal of Hydrology, 2016, 543: 47-58. doi: 10.1016/j.jhydrol.2016.04.034
    [17]
    Cardenas M B. Potential contribution of topography-driven regional groundwater flow to fractal stream chemistry: Residence time distribution analysis of Tóth flow[J]. Geophysical Research Letters, 2007, 34(5): 1-5.
    [18]
    Cardenas M B, Jiang X W. Groundwater flow, transport, and residence times through topography-driven basins with exponentially decreasing permeability and porosity[J]. Water Resources Research, 2010, 46(11): 1-9.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(282) PDF Downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return