Volume 41 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
Zhang Xiaoxu, Zhou Aiguo, Liu Yunde, Zhang Jun. Distribution characteristics and genesis of nitrate in nested groundwater flow system in northern Ordos Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 231-239. doi: 10.19509/j.cnki.dzkq.2022.0022
Citation: Zhang Xiaoxu, Zhou Aiguo, Liu Yunde, Zhang Jun. Distribution characteristics and genesis of nitrate in nested groundwater flow system in northern Ordos Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 231-239. doi: 10.19509/j.cnki.dzkq.2022.0022

Distribution characteristics and genesis of nitrate in nested groundwater flow system in northern Ordos Basin

doi: 10.19509/j.cnki.dzkq.2022.0022
  • Received Date: 31 Oct 2021
    Available Online: 02 Mar 2022
  • Under the situation of water shortage and increasingly serious groundwater nitrate pollution in Ordos Basin, it is helpful for rational utilization and protection of groundwater resources to identify the distribution and causes of nitrate in different groundwater flow systems in Ordos Basin, so this research was carried out in the typical groundwater-fed lakes area within the basin.Hydrochemistry and multivariate statistical analysis (i.e., hierarchical cluster analysis and principal component analysis) were combined to identify the nested groundwater flow systems.Based on this, the distribution characteristics of nitrate in different groundwater flow systems were compared and analyzed.And both hydrochemistry and environmental isotopes were considered to further identify the sources and potential evolution processes of nitrate in nested groundwater flow systems.The results show that the groundwater samples with nitrate content exceeding the groundwater quality standard (GB/T 14848-2017) were taken from the local and intermediate groundwater flow system, with an over-standard rate reached 28%, and the mean nitrate content in the regional groundwater flow system is about 1 mg/L.The distribution of nitrate in different groundwater flow systems was dominated by the extent of human activities, while the influence of evaporation enrichment and denitrification attenuation processes can be ignored.And within the nested groundwater flow systems, the local and intermediate ones were significantly affected by pollution from human activities, with inorganic ammonium fertilizer and manure and sewage the main pollution sources of nitrate, but the regional one has not been polluted, with mineralization of natural organic nitrogen as its nitrate source.

     

  • loading
  • [1]
    Chen Z X, Yu L, Liu W G, et al. Nitrogen and oxygen isotopic compositions of water-soluble nitrate in Taihu Lake water system, China: Implication for nitrate sources and biogeochemical process[J]. Environmental Earth Sciences, 2014, 71(1): 217-223. doi: 10.1007/s12665-013-2425-9
    [2]
    黄艳雯, 杜尧, 徐宇, 等. 洞庭湖平原西部地区浅层承压水中铵氮的来源与富集机理[J]. 地质科技通报, 2020, 39(6): 165-174. doi: 10.19509/j.cnki.dzkq.2020.0618

    Huang Y W, Du Y, Xu Y, et al. Source and enrichment mechanism of ammonium in shallow confined aquifer in the west of Dongting Plain[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 165-174(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0618
    [3]
    Ward M H, Jones R R, Brender J D, et al. Drinking water nitrate and human health: An updated review[J]. International Journal of Environmental Research and Public Health, 2018, 15(7): 1557. doi: 10.3390/ijerph15071557
    [4]
    陈新明, 马腾, 蔡鹤生, 等. 地下水氮污染的区域性调控策略[J]. 地质科技情报, 2013, 32(6): 130-143, 149. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201306021.htm

    Chen X M, Ma T, Cai H S, et al. Regional control of groundwater nitrogen contamination[J]. Geological Science and Technology Information, 2013, 32(6): 130-143, 149(in Chinese with English Abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201306021.htm
    [5]
    Nikolenko O, Jurado A, Borges A V, et al. Isotopic composition of nitrogen species in groundwater under agricultural areas: A review[J]. Science of the Total Environment, 2018, 621: 1415-1432. doi: 10.1016/j.scitotenv.2017.10.086
    [6]
    Xu S G, Kang P P, Sun Y. A Stable isotope approach and its application for identifying nitrate source and transformation process in water[J]. Environmental Science and Pollution Research, 2016, 23: 1133-1148. doi: 10.1007/s11356-015-5309-6
    [7]
    Kaushal S S, Groffman P M, Band L E, et al. Tracking nonpoint source nitrogen pollution in human-impacted watersheds[J]. Environmental Science and Technology, 2011, 45: 8225-8232. doi: 10.1021/es200779e
    [8]
    Zhang Y, Shi P, Li F, et al. Quantification of nitrate sources and fates in rivers in an irrigated agricultural area using environmental isotopes and a Bayesian isotope mixing model[J]. Chemosphere, 2018, 208: 493-501. doi: 10.1016/j.chemosphere.2018.05.164
    [9]
    Yue F J, Li S L, Liu C Q, et al. Tracing nitrate sources with dual isotopes and long term monitoring of nitrogen species in the Yellow River, China[J]. Scientific Reports, 2017, 7: 8537. doi: 10.1038/s41598-017-08756-7
    [10]
    Li C, Li S L, Yue F J, et al. Identification of sources and transformations of nitrate in the Xijiang River using nitrate isotopes and Bayesian model[J]. Science of the Total Environment, 2019, 646: 801-810. doi: 10.1016/j.scitotenv.2018.07.345
    [11]
    Taufiq A, Effendi A J, Iskandar I, et al. Controlling factors and driving mechanisms of nitrate contamination in groundwater system of Bandung Basin, Indonesia, deduced by combined use of stable isotope ratios, CFC age dating, and socioeconomic parameters[J]. Water Research, 2019, 148: 292-305. doi: 10.1016/j.watres.2018.10.049
    [12]
    Blarasin M, Cabrera A, Matiatos I, et al. Comparative evaluation of urban versus agricultural nitrate sources and sinks in an unconfined aquifer by isotopic and multivariate analyses[J]. Science of the Total Environment, 2020, 741: 140374. doi: 10.1016/j.scitotenv.2020.140374
    [13]
    Yi Q, Chen Q, Hu L, et al. Tracking nitrogen sources, transformation, and transport at a basin scale with complex plain river networks[J]. Environmental Science and Technology, 2017, 51(10): 5396-5403. doi: 10.1021/acs.est.6b06278
    [14]
    Minet E P, Goodhue R, Meier-Augenstein W, et al. Combining stable isotopes with contamination indicators: A method for improved investigation of nitrate sources and dynamics in aquifers with mixed nitrogen inputs[J]. Water Research, 2017, 124: 85-96. doi: 10.1016/j.watres.2017.07.041
    [15]
    Tóth J. Groundwater as a geologic agent: An overview of the causes, processes, and manifestations[J]. Hydrogeology Journal, 1999, 7: 1-14. doi: 10.1007/s100400050176
    [16]
    Villarreal P J, Ávila Olivera J A, Alcántara I I, et al. Nitrate as a parameter for differentiating groundwater flow systems in urban and agricultural areas: The case of Morelia-Capula area, Mexico[J]. Hydrogeology Journal, 2019, 27: 1767-1778. doi: 10.1007/s10040-019-01933-0
    [17]
    Tóth J. Gravitational systems of groundwater flow: Theory, evaluation, utilization[M]. Cambridge: Cambridge University Press, 2009.
    [18]
    侯光才. 鄂尔多斯白垩系盆地地下水系统及其水循环模式研究[D]. 长春: 吉林大学, 2008.

    Hou G C. Groundwater system and water circulation pattern in Ordos Cretaceous groundwater Basin[D]. Changchun: Jilin University, 2008(in Chinese with English abstract).
    [19]
    Jiang X W, Wan L, Wang J Z, et al. Field identification of groundwater flow systems and hydraulic traps in drainage basins using a geophysical method[J]. Geophysical Research Letters, 2014, 41(8): 2812-2819. doi: 10.1002/2014GL059579
    [20]
    Jiang X W, Wan L, Wang X S, et al. A Multi-method study of regional groundwater circulation in the Ordos Plateau, NW China[J]. Hydrogeology Journal, 2018, 26: 1657-1668. doi: 10.1007/s10040-018-1731-4
    [21]
    Pan G F, Li X Q, Zhang J, et al. Groundwater-flow-system characterization with hydrogeochemistry: A case in the lakes discharge area of the Ordos Plateau, China[J]. Hydrogeology Journal, 2019, 27: 669-683. doi: 10.1007/s10040-018-1888-x
    [22]
    王冬, 侯光才, 赵振宏. 鄂尔多斯盐海子地下水水流系统划分: 来自水化学方面的探讨[J]. 干旱区资源与环境, 2014, 28(12): 122-127. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201412021.htm

    Wang D, Hou G C, Zhao Z H. Division of groundwater flow system of Yanhaizi in Ordos: From the aspect of hydrochemistry[J]. Journal of Arid Land Resources and Environment, 2014, 28(12): 122-127(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201412021.htm
    [23]
    Lyu M, Pang Z, Yin L, et al. The control of groundwater flow systems and geochemical processes on groundwater chemistry: A case study in Wushenzhao Basin, NW China[J]. Water, 2019, 11(4): 790. doi: 10.3390/w11040790
    [24]
    Lyu M, Pang Z, Huang T, et al. Hydrogeochemical evolution and groundwater quality assessment in the Dake Lake Basin, Northwest China[J]. Journal of Radioanalytical and Nuclear Chemistry, 2019, 320: 865-883. doi: 10.1007/s10967-019-06515-8
    [25]
    张晶, 刘运德, 周爱国, 等. 硝酸盐污染地下水中溶解性有机质光谱特征及其指示意义: 以鄂尔多斯盆地北部湖泊集中区为例[J]. 地质科技情报, 2019, 38(4): 262-269. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904028.htm

    Zhang J, Liu Y D, Zhou A G, et al. Spectral characteristics of dissolved organic matter and their implications in groundwater contaminated by nitrate of lake concentration area in northern Ordos Basin[J]. Geological Science and Technology Information, 2019, 38(4): 262-269(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904028.htm
    [26]
    Yang Q C, Wang L C, Ma H Y, et al. Hydrochemical characterization and pollution sources identification of groundwater in Salawusu aquifer system of Ordos Basin, China[J]. Environmental Pollution, 2016, 216: 340-349. doi: 10.1016/j.envpol.2016.05.076
    [27]
    王冬. 鄂尔多斯白垩系盆地北部潜水硝酸盐污染成因分析及防治对策[J]. 地下水, 2006(4): 56-57, 107. doi: 10.3969/j.issn.1004-1184.2006.04.021

    Wang D. Analysis on formation causes of nitrate contamination of shallow groundwater and control countermeasures in northern part of cretaceous Ordos Basin[J]. Groundwater, 2006(4): 56-57, 107(in Chinese with English abstract). doi: 10.3969/j.issn.1004-1184.2006.04.021
    [28]
    Zhang Y, Liu Y, Zhou A, et al. Identification of groundwater pollution from livestock farming using fluorescence spectroscopy coupled with multivariate statistical methods[J]. Water Research, 2021, 206: 117754. doi: 10.1016/j.watres.2021.117754
    [29]
    Yin L H, Hou G C, Dou Y, et al. Hydrogeochemical and isotopic study of groundwater in the Habor Lake Basin of the Ordos Plateau, NW China[J]. Environmental Earth Sciences, 2011, 64: 1575-1584. doi: 10.1007/s12665-009-0383-z
    [30]
    马稚桐. 鄂尔多斯盆地风沙滩区土壤-地下水蒸发研究[D]. 西安: 长安大学, 2019.

    Ma Z T. Research on soil-groundwater evaporation in the wind-blown sand area of Ordos Basin[D]. Xi'an: Chang'an University, 2019(in Chinese with English abstract).
    [31]
    Chen J S, Liu X Y, Wang C Y, et al. Isotopic constraints on the origin of groundwater in the Ordos Basin of Northern China[J]. Environmental Earth Sciences, 2012, 66: 505-517. doi: 10.1007/s12665-011-1259-6
    [32]
    曹阳. 鄂尔多斯白垩系盆地北部典型湖淖地区地下水循环模式研究[D]. 长春: 吉林大学, 2009.

    Cao Y. Groundwater circulation patterns of typical lake area in northern Ordos Cretaceous Basin[D]. Changchun: Jilin University, 2009(in Chinese with English abstract).
    [33]
    Zhang J, Wang X S, Yin L H, et al. Inflection points on groundwater age and geochemical profiles along wellbores light up hierarchically nested flow systems[J]. Geophysical Research Letters, 2021, 48(16): 1-10.
    [34]
    Cloutier V, Lefebvre R, Therrien R, et al. Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system[J]. Journal of Hydrology, 2008, 353(3/4): 294-313.
    [35]
    Castro R P, Ávila J P, Ye M, et al. Groundwater quality: Analysis of its temporal and spatial variability in a karst aquifer[J]. Groundwater, 2018, 56(1): 62-72. doi: 10.1111/gwat.12546
    [36]
    Güler C, Thyne G D, McCray J E, et al. Evaluation of graphical and multivariate statistical methods for classification of water chemistry data[J]. Hydrogeology Journal, 2002, 10: 455-474. doi: 10.1007/s10040-002-0196-6
    [37]
    Woocay A, Walton J. Multivariate analyses of water chemistry: Surface and ground water interactions[J]. Groundwater, 2008, 46(3): 437-449. doi: 10.1111/j.1745-6584.2007.00404.x
    [38]
    Yin L, Hou G, Su X, et al. Isotopes (δD and δ18O) in precipitation, groundwater and surface water in the Ordos Plateau, China: Implications with respect to groundwater recharge and circulation[J]. Hydrogeology Journal, 2011, 19: 429-443. doi: 10.1007/s10040-010-0671-4
    [39]
    梁杏, 张婧玮, 蓝坤, 等. 江汉平原地下水化学特征及水流系统分析[J]. 地质科技通报, 2020, 39(1): 21-33. doi: 10.19509/j.cnki.dzkq.2020.0103

    Liang X, Zhang J W, Lan K, et al. Hydrochemical characteristics of groundwater and analysis of groundwater flow systems in Jianghan Plain[J]. Bulletin of Geological Scienceand Technology, 2020, 39(1): 21-33(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0103
    [40]
    潘欢迎, 邹常健, 毕俊擘, 等. 新疆阿克苏典型山前洪积扇内高氟地下水的化学特征及氟富集机制[J]. 地质科技通报, 2021, 40(3): 194-203. doi: 10.19509/j.cnki.dzkq.2021.0312

    Pan H Y, Zou C J, Bi J B, et al. Hydrochemical characteristics and fluoride enrichment mechanisms of high-fluoride groundwater in a typical piedmont proluvial fan in Aksu area, Xinjiang, China[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 194-203(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0312
    [41]
    Mariotti A, Germon J C, Hubert P, et al. Experimental determination of nitrogen kinetic isotope fractionation: Some principles; illustration for the denitrification and nitrification processes[J]. Plant and Soil, 1981, 62: 413-430. doi: 10.1007/BF02374138
    [42]
    Rivett M O, Buss S R, Morgan P, et al. Nitrate attenuation in groundwater: A review of biogeochemical controlling processes[J]. Water Research, 2008, 42(16): 4215-4232. doi: 10.1016/j.watres.2008.07.020
    [43]
    Xuan Y X, Tang C Y, Cao Y J. Mechanisms of nitrate accumulation in highly urbanized rivers: Evidence from multi-isotopes in the pearl River Delta, China[J]. Journal of Hydrology, 2020, 587: 124924. doi: 10.1016/j.jhydrol.2020.124924
    [44]
    Xue D M, Botte J, De Baets B, et al. Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater[J]. Water Research, 2009, 43(5): 1159-1170. doi: 10.1016/j.watres.2008.12.048
    [45]
    Böttcher J, Strebel O, Voerkelius S, et al. Using isotope fractionation of nitrate nitrogen and nitrate oxygen for evaluation of microbial denitrification in a sandy aquifer[J]. Journal of Hydrology, 1990, 114(3/4): 413-424.
    [46]
    Fukada T, Hiscock K M, Dennis P F, et al. A dual isotope approach to identify denitrification in groundwater at a river-bank infiltration site[J]. Water Research, 2003, 37(13): 3070-3078. doi: 10.1016/S0043-1354(03)00176-3
    [47]
    Wang W, Song X, Ma Y. Identification of nitrate source using isotopic and geochemical data in the lower reaches of the Yellow River irrigation district(China)[J]. Environmental Earth Sciences, 2016, 75: 936. doi: 10.1007/s12665-016-5721-3
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(255) PDF Downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return