Volume 41 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
Guo Leilei, Wei Liangshuai, Huang Anbang, Shu Qinfeng. Structure of karst groundwater system and its water exploration in Wumeng Mountain area[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 146-156, 167. doi: 10.19509/j.cnki.dzkq.2022.0025
Citation: Guo Leilei, Wei Liangshuai, Huang Anbang, Shu Qinfeng. Structure of karst groundwater system and its water exploration in Wumeng Mountain area[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 146-156, 167. doi: 10.19509/j.cnki.dzkq.2022.0025

Structure of karst groundwater system and its water exploration in Wumeng Mountain area

doi: 10.19509/j.cnki.dzkq.2022.0025
  • Received Date: 25 Oct 2021
    Available Online: 02 Mar 2022
  • The Wumeng Mountain Contiguous Zone in China always suffers from deficiency of groundwater resources.The Zhaotong area of Yunnan Provience belongs to the Wumeng Mountain area, which was the key area.We carried out geological survey, spring flow statistics and water quality evaluation in karst stratum.The strip karst area, which always located in ridge-valley area, with many target aquifers, karst shallow.Groundwater was concentrated in the core of anticlinoria and both wings, the core of syncline and fault zone.The buried karst water mainly concentrated in the paleo-karst stratum in Zhaolu fault basin, and covered below Tertiary system.Most chemical type of groundwater was determined as HCO3 and HCO3·SO4 type.The strip and buried karst water account for 96.73% and 92.93% respectively.The comprehensive water quality evaluation results of 80.84% simple analysis and 64.41% total analysis were classified as Ⅰ-Ⅲ.We suggest that large flow springs more than 50 L/s should be extracted, diverted and stored for winter use.Combined with geophysical exploration and drilling verification, the target aquifer was more successfully found in water-rich section of strip and shallow buried karst areas.Firstly, the high-density electrical method and combined profile method were conducted to find out the karst fracture zone and fault.Then, the IP sounding was set to explore the depth of the aquifer with high polarizability.Finally, the water supply segment and water inflow were determined by comprehensive logging and drilling.The rate of successfully extracting water was 86.67%.Then, we could recommend the well location.

     

  • loading
  • [1]
    袁道先. 我国西南岩溶石山的环境地质问题[J]. 世界科技研究与发展, 1997, 19: 41-43. https://www.cnki.com.cn/Article/CJFDTOTAL-SJKF199705009.htm

    Yuan D X. On the environmental and geologic problems of karst mountains and rocks in the Southwest China[J]. World SCI-Tech R & D, 1997, 19: 41-43(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SJKF199705009.htm
    [2]
    Sun W J, Song J X, Yang W K, et al. Distribution of carbonate rocks and variation analysis of karst water resources in China[J]. Carbonates and Evaporites, 2020, 35(121): 2-9.
    [3]
    张俊锋, 李强, 史永跃, 等. 西南某隧道岩溶水发育规律及涌水量预测[J]. 现代隧道技术, 2021, 58(2): 14-21, 50. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD202102004.htm

    Zhang J F, Li Q, Shi Y Y, et al. On development law of karst water and prediction of water inflow in a tunnel in Southwest China[J]. Modern Tunneling Technology, 2021, 58(2): 14-21, 50(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD202102004.htm
    [4]
    袁道先. 对南方岩溶石山地区地下水资源及生态环境地质调查的一些意见[J]. 中国岩溶, 2000, 19(2): 103-108. doi: 10.3969/j.issn.1001-4810.2000.02.001

    Yuan D X. Aspects on the new round land and resources survey in kast rock desertification areas of South China[J]. Carsologica Sinica, 2000, 19(2): 103-108(in Chinese with English abstract). doi: 10.3969/j.issn.1001-4810.2000.02.001
    [5]
    靖娟利, 陈植华, 胡成, 等. 中国西南部岩溶山区生态环境脆弱性评价[J]. 地质科技情报, 2003, 23(3): 95-99, 108. doi: 10.3969/j.issn.1000-7849.2003.03.019

    Jing J L, Cheng Z H, Hu C, et al. Study on eco-environment fragile evaluation of karst mountains in Southwest China[J]. Geological Science and Technology Information, 2003, 23(3): 95-99, 108(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2003.03.019
    [6]
    张彦林, 李生永, 付东林, 等. 陇东盆地西部岩溶地下水形成机制研究[J]. 中国地质, 2006, 33(6): 1393-1399. doi: 10.3969/j.issn.1000-3657.2006.06.024

    Zhang Y L, Li S Y, Fu D L, et al. Formation mechanism of karst groundwater in the western Longdong Basin[J]. Geology in China, 2006, 33(6): 1393-1399(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2006.06.024
    [7]
    洪涛, 谢运球, 喻崎雯, 等. 乌蒙山重点地区地下水水化学特征及成因分析[J]. 地球与环境, 2016, 44(1): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201601002.htm

    Hong T, Xie Y Q, Yu Q W, et al. Hydrochemical characteristics study and genetic analysis of groundwater in a key region of the Wumeng Mountain, southwestern China[J]. Earth and Environment, 2016, 44(1): 11-18(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201601002.htm
    [8]
    钟金先, 李成, 刘兆鑫, 等. 基岩裂隙水水化学特征的聚类分析: 以乌蒙山重点地区为例[J]. 四川环境, 2017, 36(5): 53-58. doi: 10.3969/j.issn.1001-3644.2017.05.010

    Zhong J X, Li C, Liu Z X, et al. Cluster analysis of chemical characteristics of bedrock fissure water: Taking the Wumeng Shan key areas for example[J]. Sichuan Environment, 2017, 36(5): 53-58(in Chinese with English abstract). doi: 10.3969/j.issn.1001-3644.2017.05.010
    [9]
    魏良帅, 黄安邦, 罗雲丰, 等. 乌蒙山昭通地区玄武岩地下水赋存规律及开发利用[J]. 地质通报, 2020, 39(12): 1891-1898. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202012004.htm

    Wei L S, Huang A B, Luo Y F, et al. Occurrence regularity and exploration and utilization of groundwater in Zhaotong area of Wumeng Mountain[J]. Geological Bulletin of China, 2020, 39(12): 1891-1898(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202012004.htm
    [10]
    Susilo H, Purwantoro D, Rahadiansyah S. Model performance index of groundwater irrigation systems in the karst mountain region: Case study in Gunung Kidul Regency, Yogyakarta[J]. IOP Conference Series: Earth and Environmental Science, 2021, 641: 012014. doi: 10.1088/1755-1315/641/1/012014
    [11]
    Ana I M, José F M R, Juan A B, et al. Groundwater vulnerability to pollution in karst aquifers, considering key challenges and considerations: Application to the Ubrique springs in southern Spain[J]. Hydrogeology Journal, 2021, 29: 379-396. doi: 10.1007/s10040-020-02279-8
    [12]
    Hao Z, Gao Y, Green M S, et al. Chemicalcharacteristics of flow driven by rainfall and associated impacts on shallow groundwater quality in a karst watershed, Southwest China[J]. Environmental Processes, 2021(8): 615-636.
    [13]
    Stevanović Z, Stevanović A M. Monitoring as the key factor for sustainable use and protection of groundwater in karst environments: An overview[J]. Sustainability, 2021, 13: 5468. doi: 10.3390/su13105468
    [14]
    张亮. 毛坪铅锌矿岩溶地下水系统及结构辨识研究[D]. 武汉: 中国地质大学(武汉), 2021.

    Zhang L. Study on karst groundwater systems and structure identification in Maoping lead-zinc mine, Southwest China[D]. Wuhan: China University of Geosciences(Wuhan), 2021(in Chinese with English abstract).
    [15]
    刘伟江, 袁祥美, 张雅, 等. 贵阳市岩溶地下水水化学特征及演化过程分析[J]. 地质科技情报, 2018, 37(6): 245-251. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201806031.htm

    Liu W J, Yuan X M, Zhang Y, et al. Hydrochemical characteristics and evolution of karst groundwater in Guiyang City[J]. Geological Science and Technology Information, 2018, 37(6): 245-251(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201806031.htm
    [16]
    赵春红, 梁永平, 卢海平, 等. 娘子关泉域岩溶水氢氧同位素特征及影响因素浅析[J]. 地质科技情报, 2018, 37(5): 200-205. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201805028.htm

    Zhao C H, Liang Y P, Lu H P, et al. Hydrogen and oxygen isotopic characteristics and influencing factors of karst water in the Niangziguan spring area[J]. Geological Science and Technology Information, 2018, 37(5): 200-205(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201805028.htm
    [17]
    Temovski M, Túri M, Futó I, et al. Multi-method geochemical characterization of groundwater from a hypogene karst system[J]. Hydrogeology Journal, 2021, 29: 1129-1152. doi: 10.1007/s10040-020-02293-w
    [18]
    René V H, Oscar G M, Glenda R L, et al. Hydrochemistry, δD and δ18O to explain the distribution of water quality in a karst setting in the semi-arid region of Northeast Mexico[J]. Environmental Earth Sciences, 2021, 80(6): 3-12.
    [19]
    Palcsu L, Gessert A, Túri M, et al. Long-term time series of environmental tracers reveal recharge and discharge conditions in shallow karst aquifers in Hungary and Slovakia[J]. Journal of Hydrology: Regional Studies, 2021, 36: 100858. doi: 10.1016/j.ejrh.2021.100858
    [20]
    Li C C, Gao X B, Wang W Z, et al. Hydro-biogeochemical processes of surface water leakage into groundwater in large scale karst water system: A case study at Jinci, northern China[J]. Journal of Hydrology, 2020, 596: 125691.
    [21]
    黄奇波, 康志强, 覃小群, 等. 习水县岩溶水系统ρ(Sr2+)、ρ(Sr)/ρ(Ca)、ρ(Sr)/ρ(Mg)分布特征及其应用[J]. 地质科技情报, 2011, 30(4): 98-103. doi: 10.3969/j.issn.1000-7849.2011.04.015

    Hung Q B, Kang Z Q, Qin X Q, et al. Distribution characteristics of Sr2+, Sr/Ca, Sr/Mg and its applications in karst water system of Xishui County[J]. Geological Science and Technology Information, 2011, 30(4): 98-103(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2011.04.015
    [22]
    郭清海, 王焰新. 水文地球化学信息对岩溶地下水流动系统特征的指示意义: 以山西神头泉域为例[J]. 地质科技情报, 2006, 25(3): 85-88. doi: 10.3969/j.issn.1000-7849.2006.03.015

    Guo Q H, Wang Y X. Hydrogeochemistry as an indicator for karst groundwater flow: A case study in the Shentou karst water system, Shanxi, China[J]. Geological Science and Technology Information, 2006, 25(3): 85-88(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2006.03.015
    [23]
    李义连, 王焰新, 周来茹, 等. 地下水矿物饱和度的水文地球化学模拟分析: 以娘子关泉域岩溶水为例[J]. 地质科技情报, 2002, 21(1): 32-36. doi: 10.3969/j.issn.1000-7849.2002.01.008

    Li Y L, Wang Y X, Zhou L R, et al. Hydrogeochemical modeling in saturation of minerals in groundwater: A case study at Niangziguan, northern China[J]. Geological Science and Technology Information, 2002, 21(1): 32-36(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2002.01.008
    [24]
    Chen S, Peng H Y, Yang C, et al. Investigation of the impacts of tunnel excavation on karst groundwater and dependent geo-environment using hydrological observation and numerical simulation: A case from karst anticline mountains of southeastern Sichuan Basin, China[J]. Environmental Science and Pollution Research International, 2021, 28(30): 40203-40216. doi: 10.1007/s11356-021-13919-1
    [25]
    郭绪磊, 朱静静, 陈乾龙, 等. 新型地下水流速流向测量技术及其在岩溶区调查中的应用[J]. 地质科技情报, 2019, 38(1): 243-249. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901027.htm

    Guo X L, Zhu J J, Chen Q L, et al. Flow direction and its application in the investigation of karst area[J]. Geological Science and Technology Information, 2019, 38(1): 243-249(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901027.htm
    [26]
    Pisani L, Antonellini M, D'Angeli I M, et al. Structurally controlled development of a sulfuric hypogene karst system in a fold-and-thrust belt(Majella Massif, Italy)[J]. Journal of Structural Geology, 2021, 145: 104305. doi: 10.1016/j.jsg.2021.104305
    [27]
    袁建飞, 邓国仕, 徐芬, 等. 毕节市北部岩溶地下水水文地球化学特征[J]. 水文地质工程地质, 2016, 43(1): 12-21. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201601004.htm

    Yuan J F, Deng G S, Xu F, et al. Hydrogeochemical characteristics of karst groundwater in the northern part of the city of Bijie[J]. Hydrogeology & Environment Geology, 2016, 43(1): 12-21(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201601004.htm
    [28]
    袁建飞, 邓国仕, 徐芬, 等. 毕节市北部岩溶地下水水化学特征及影响因素的多元统计分析[J]. 中国地质, 2016, 43(4): 1446-1456. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201604029.htm

    Yuan J F, Deng G S, Xu F, et al. The multivariate statistical analysis of chemical characteristics and influencing factors of karst groundwater in the northern part of Bijie City, Guizhou Province[J]. Geology in China, 2016, 43(4): 1446(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201604029.htm
    [29]
    郑明英, 王明章. 深切河谷区开放型岩溶地下水系统特征研究[J]. 贵州地质, 2011, 28(1): 65-69. doi: 10.3969/j.issn.1000-5943.2011.01.012

    Zheng M Y, Wang M Z. Characters of open karst groundwater system in the deep-incised valley[J]. Guizhou Geology, 2011, 28(1): 65-69(in Chinese with English abstract). doi: 10.3969/j.issn.1000-5943.2011.01.012
    [30]
    曹锐, 冉瑜, 吕玉香, 等. 物探与水文地质分析结合在岩溶地区找水定井中的应用: 以黔江区罗家坝ZK3井为例[J]. 中国岩溶, 2018, 37(2): 280-285. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201802015.htm

    Cao R, Ran Y, Lv Y X, et al. Application of geophysical prospecting and hydrogeological analysis in borehole siting in the karst area: A case study of ZK3 well in Luojiaba, Qianjiang district[J]. Carsologica Sinica, 2018, 37(2): 280-285(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201802015.htm
    [31]
    任蕊, 杨成程, 匡野. 乌蒙山岩溶缺水地区表层岩溶泉有效开发模式研究[J]. 地下水, 2018, 40(2): 24-26. doi: 10.3969/j.issn.1004-1184.2018.02.008

    Ren R, Yang C C, Kuang Y. Study on the exploitation model of epikarst spring karst water Wumengshan area[J]. Groundwater, 2018, 40(2): 24-26(in Chinese with English abstract). doi: 10.3969/j.issn.1004-1184.2018.02.008
    [32]
    钟金先, 崔英山, 毛郁, 等. 乌蒙山重点地区水文地质特征分析[J]. 地下水, 2016, 38(5): 179-182. doi: 10.3969/j.issn.1004-1184.2016.05.070

    Zhong J X, Cui Y S, Mao Y, et al. Analysis on hydrogeology characteristics in Wumengshan key areas[J]. Groundwater, 2016, 38(5): 179-182(in Chinese with English abstract). doi: 10.3969/j.issn.1004-1184.2016.05.070
    [33]
    李华, 焦彦杰, 吴文贤, 等. 西南岩溶地区找水的地球物理方法探讨[J]. 水文地质工程地质, 2011, 38(5): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201105003.htm

    Li H, Jiao Y J, Wu W X, et al. A tentative analysis on the geophysical technique which is compatible for groundwater exploration at karst area in Southwest of China[J]. Hydrogeology & Environment Geology, 2011, 38(5): 1-6(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201105003.htm
    [34]
    程正璞, 田蒲源, 吕勇, 等. 综合地球物理方法在乌蒙山岩溶区地质填图中的应用[J]. 工程地球物理学报, 2019, 16(6): 829-836. doi: 10.3969/j.issn.1672-7940.2019.06.008

    Cheng Z P, Tian P Y, Lv Yong, et al. Application of integrated geophysical method geological mapping of Wumengshan karst area[J]. Chinese Journal of Engineering Geophysics, 2019, 16(6): 829-836(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7940.2019.06.008
    [35]
    席义明, 杨涛毅. 贵州岩溶石山区物探找水方法综合集成趋势分析[J]. 贵州地质, 2012, 29(2): 108-111. doi: 10.3969/j.issn.1000-5943.2012.02.009

    Xi M Y, Yang T Y. Analyses on development direction of comprehensible geophysical groundwater exploration technology in karst mountain area of Guizhou[J]. Guizhou Geology, 2012, 29(2): 108-111. doi: 10.3969/j.issn.1000-5943.2012.02.009
    [36]
    裴建国, 梁茂珍, 陈阵. 西南岩溶石山地区岩溶地下水系统划分及其主要特征值统计[J]. 中国岩溶, 2008, 27(1): 6-10. doi: 10.3969/j.issn.1001-4810.2008.01.002

    Pei J G, Liang M Z, Chen Z. Classification of karst groundwater system and statistics of the main characteristic values in Southwest China karst mountain[J]. Carsologica Sinica, 2008, 27(1): 6-10(in Chinese with English abstract). doi: 10.3969/j.issn.1001-4810.2008.01.002
    [37]
    贾晓青, 刘建, 罗明明, 等. 基于改进的DRASTIC模型对香溪河典型岩溶流域地下水脆弱性评价[J]. 地质科技情报, 2019, 38(4): 255-261. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904027.htm

    Jia X Q, Liu J, Luo M M, et al. Groundwater vulnerability assessment of Xiangxi River karst basin based on modified DRASTIC model[J]. Geological Science and Technology Information, 2019, 38(4): 255-261(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904027.htm
    [38]
    李凤哲, 朱庆俊, 孙银行. 西南岩溶山区物探找水效果[J]. 物探与化探, 2013, 37(4): 591-595. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201304006.htm

    Li F Z, Zhu Q J, Sun Y X. The effects of geophysical water exploration in karst mountain Southwest China[J]. Geophysical & Geochemical Exploration, 2013, 37(4): 591-595(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201304006.htm
    [39]
    焦彦杰, 吴文贤, 杨剑, 等. 云南岩溶石山区物探找水方法与实例分析[J]. 中国地质, 2011, 38(3): 770-778. doi: 10.3969/j.issn.1000-3657.2011.03.025

    Jiao Y J, Wu W X, Yang J, et al. Geophysical water exploration methods in stone mountain karst areas and case analysis[J]. Geology in China, 2011, 38(3): 770-778(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2011.03.025
    [40]
    曹崇本, 周世恩. 岩溶蓄水构造电阻率模型建立及其在物探找水中的应用[J]. 贵州地质, 2014, 31(3): 223-228. doi: 10.3969/j.issn.1000-5943.2014.03.012

    Cao C B, Zhou S E. Building and significance of karst reservoir structure resistivity model in geophysical water exploration[J]. Geology in China, 2014, 31(3): 223-228(in Chinese with English abstract). doi: 10.3969/j.issn.1000-5943.2014.03.012
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(249) PDF Downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return