Volume 41 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
Wu Hongyao, Yang Yanna, Zeng Xianming, Liu Yang. Depth of strong development of karst based on quantitative factors of hydrodynamic conditions[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 319-327. doi: 10.19509/j.cnki.dzkq.2022.0027
Citation: Wu Hongyao, Yang Yanna, Zeng Xianming, Liu Yang. Depth of strong development of karst based on quantitative factors of hydrodynamic conditions[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 319-327. doi: 10.19509/j.cnki.dzkq.2022.0027

Depth of strong development of karst based on quantitative factors of hydrodynamic conditions

doi: 10.19509/j.cnki.dzkq.2022.0027
  • Received Date: 30 Oct 2021
    Available Online: 02 Mar 2022
  • The hydrodynamic condition of groundwater vertical circulation is the main factor to control the development depth of karst.In order to explore the karst strong development depth under the multistage flow system in the anticline karst area of East Sichuan.The quantitative factor of karst hydrodynamic strength(FHQ) is constructed by using GIS technology and selecting topographic index and hydrodynamic gradient.Combined with drilling data, the depth of strong development of underground karst in Jiajiao Mountain anticline structure area is calculated.The results show that the hydrodynamic factor FHQ is positively correlated with topographic index and hydrodynamic gradient in space.At the same time, it can indicate the depth of deep circulation of karst water flow system, so as to calculate the lower limit of strong development depth of underground karst in anticline structural areas.The FHQ of the two wings of the Jiajiao Mountain anticline is between 0.1 and 0.4, the karst hydrodynamic force is generally weak, and the FHQ value of the deep ditch is generally higher than that of the shallow ditch.The strong development depth of underground karst under the control of deep trenches in the east and west wings of anticline is about 40-100 m and 110-180 m respectively.It is hoped that the research results will further enrich the evaluation method system of karst development in east Sichuan anticline area.It also provides a theoretical basis for the prediction and prevention of karst water inrush disaster in tunnel engineering.

     

  • loading
  • [1]
    李苍松, 丁建芳, 廖烟开. 岩溶隧道地下水化学动力学及分形特征[M]. 北京: 科学出版社, 2017.

    Li C S, Ding J F, Liao Y K. Groundwater chemical kinetics and fractal characteristics of karst tunnel[M]. Beijing: Science Press, 2017(in Chinese).
    [2]
    李钜章. 中国地貌形态基本类型数量指标初探[J]. 地理学报, 1982(1): 17-26. doi: 10.3321/j.issn:0375-5444.1982.01.003

    Li J Z. A preliminary study on quantitative indexes of basic types of geomorphology in China[J]. Acta Geographica Sinica, 1982(1): 17-26(in Chinese with English abstract). doi: 10.3321/j.issn:0375-5444.1982.01.003
    [3]
    熊道馄. 岩溶发育垂直分带及其工程地质意义[J]. 四川地质学报, 2004(2): 95-98. doi: 10.3969/j.issn.1006-0995.2004.02.009

    Xiong D K. Vertical zonation of karstification and its engineering geological significance[J]. Acta Geologica Sichuan, 2004(2): 95-98(in Chinese with English abstract). doi: 10.3969/j.issn.1006-0995.2004.02.009
    [4]
    孔凡哲, 芮孝芳. 基于地形特征的流域水文相似性[J]. 地理研究, 2003(6): 709-715. doi: 10.3321/j.issn:1000-0585.2003.06.005

    Kong F Z, Rui X F. Hydrological similarity of catchments based on topography[J]. Geographical Research, 2003(6): 709-715(in Chinese with English abstract). doi: 10.3321/j.issn:1000-0585.2003.06.005
    [5]
    薛显武, 陈喜, 张志才, 等. 基于地形因子特征值的喀斯特流域地貌类型判别[J]. 中国岩溶, 2009, 28(2): 175-180. doi: 10.3969/j.issn.1001-4810.2009.02.012

    Xue X W, Chen X, Zhang Z C, et al. Categorization of karst landform on the basis of landform factor eigenvalue[J]. Carsologica Sinica, 2009, 28(2): 175-180(in Chinese with English abstract). doi: 10.3969/j.issn.1001-4810.2009.02.012
    [6]
    钟玲敏, 许模, 吴明亮, 等. 多级水流系统耦合下深部岩溶分异研究: 以川东隔挡式构造区中梁山背斜南段为例[J]. 水文地质工程地质, 2018, 45(1): 45-51.

    Zhong L M, Xu M, Wu M L, et al. Development of deep karst under the coupling of multistage flow systems : A case of southern part of the Zhongliang Mountain anticline of the parallel barrier structure in eastern Sichuan[J]. Hydrogeology & Engineering Geology, 2018, 45(1): 45-51(in Chinese with English abstract).
    [7]
    肖鸿林. 水力梯度对喀斯特峡谷形成的影响: 以猫跳河、六冲河为例[J]. 中国岩溶, 1996, 15(4): 81-88. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR604.010.htm

    Xiao H L. The influence of hydraulic gradient on form of karst canyon: Case study of Maotiao and Liuchong rivers[J]. Carsologica Sinica, 1996, 15(4): 81-88(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR604.010.htm
    [8]
    高宗军, 王世臣, 许传杰, 等. 排泄点对地下水流分异的控制作用[J]. 水文地质工程地质, 2014, 41(4): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201404006.htm

    Gao Z J, Wang S C, Xu C J, et al. A study of the discharge controlling the differentiation of groundwater flow systems[J]. Hydrogeology & Engineering Geology, 2014, 41(4): 6-10(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201404006.htm
    [9]
    Tóth J. Groundwater as a geological agent: An overview of the cause, process, and manifestation[J]. Hydrogeology Journal, 1999, 7(1): 1-14. doi: 10.1007/s100400050176
    [10]
    李世柏, 曹卫东. 岩溶发育程度的研究[J]. 电力勘测设计, 2012(5): 1-5. doi: 10.3969/j.issn.1671-9913.2012.05.001

    Li S B, Cao W D. Research on karst growth extent[J]. Electric Power Survey & Design, 2012(5): 1-5(in Chinese with English abstract). doi: 10.3969/j.issn.1671-9913.2012.05.001
    [11]
    李苍松. 岩溶地质分形预报方法的应用研究[D]. 成都: 西南交通大学, 2006.

    Li C S. The applied study on the fractal forecasting method of karst geology[D]. Chengdu: Southwest Jiaotong University, 2006(in Chinese with English abstract).
    [12]
    杨明德. 岩溶峡谷区溶洞发育特征及水动力条件[J]. 中国岩溶, 1998, 17(3): 5-13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR803.000.htm

    Yang M D. Characteristics and hydrodynamic conditions of cave development in karst gorge districts[J]. Carsologica Sinica, 1998, 17(3): 5-13(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR803.000.htm
    [13]
    江欣悦, 李静, 郭林, 等. 豫北平原浅层地下水化学特征与成因机制[J]. 地质科技通报, 2021, 40(5): 290-300. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202105030.htm

    Jiang X Y, Li J, Guo L, et al. Chemical characteristics and formation mechanism of shallow groundwater in the northern Henan Plain[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 290-300(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202105030.htm
    [14]
    Maihemuti B, Ghasemizadeh R, Xue Y, et al. Simulation of regional karst aquifer system and assessment of groundwater resources in Manatí-ega Baja, Puerto Rico[J]. Journal of Water Resource and Protection, 2015, 7(12): 909-922. doi: 10.4236/jwarp.2015.712075
    [15]
    Meng X, Xiong L Y, Yang X W, et al. A terrain openness index for the extraction of karst Fenglin and Fengcong landform units from DEMs[J]. Journal of Mountain Science, 2018, 15(4): 752-764. doi: 10.1007/s11629-017-4742-z
    [16]
    Szczygiel J, Golicz M, Hercman H, et al. Geological constraints on cave development in the plateau-gorge karst of South China(Wulong, Chongqing)[J]. Geomorphology, 2018, 304: 50-63. doi: 10.1016/j.geomorph.2017.12.033
    [17]
    Srensen R, Zinko U, Seibert J. On the calculation of the topographic wetness index: Evaluation of different methods based on field observations[J]. Hydrology & Earth System Sciences, 2006, 10(4): 101-112.
    [18]
    秦万成. 重庆附近地区的岩溶地貌[J]. 西南师范学院学报: 自然科学版, 1982(1): 52-65. https://www.cnki.com.cn/Article/CJFDTOTAL-XNZK198201007.htm

    Qin W C. Karst landform in the area near Chongqing[J]. Journal of Southwest China Normal University: Natural Science Edition, 1982(1): 52-65(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XNZK198201007.htm
    [19]
    王骞迎, 张艺武, 苏小四, 等. 伊犁河谷西部平原多级次地下水循环模式[J]. 南水北调与水利科技: 中英文, 2020, 18(4): 167-177. https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD202004017.htm

    Wang Q Y, Zhang Y W, Su X S, et al. Study on multi-level groundwater cycle pattern in thewestern plain of Yili River valley[J]. South-to-North Water Transfers and Water Science & Technology, 2020, 18(4): 167-177(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD202004017.htm
    [20]
    钱海涛, 谭朝爽, 王思敬. 岩溶发育深度问题研究现状与展望[J]. 人民黄河, 2014, 36(11): 114-116, 126. doi: 10.3969/j.issn.1000-1379.2014.11.034

    Qian H T, Tan C S, Wang S J. Progress and expectation of research on the depth of karsts in water resources and hydropower engineering[J]. Yellow River, 2014, 36(11): 114-116, 126(in Chinese with English abstract). doi: 10.3969/j.issn.1000-1379.2014.11.034
    [21]
    梁杏, 张人权, 牛宏, 等. 地下水流系统理论与研究方法的发展[J]. 地质科技情报, 2012, 31(5): 143-151. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201205020.htm

    Liang X, Zhang R Q, Niu H, et al. Development of the theory and research method of groundwater flow system[J]. Geological Science and Technology Information, 2012, 31(5): 143-151(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201205020.htm
    [22]
    Tóth J. A theory of groundwater motion in small drainage basins in central Alberta, Canada[J]. Journal of Geophysical Research, 1962, 67(11): 4375-4388. doi: 10.1029/JZ067i011p04375
    [23]
    Tóth J. Gravitational system of groundwater: Theory evaluation, utilization[M]. New York: Cambridge University Press, 2009.
    [24]
    Pavel B, Michal V, Ludovltl G, et al. Jósvafo paleo-polje: Morphology and relation to the landform evolution of Aggtelek karst and Jósva River valley, Hungary[J]. Zeitschrift für Geomorphologie, 2016, 60(3): 219235.
    [25]
    王喆. 岩溶地下水系统演化的数值模拟[J]. 地质科技情报, 2013, 32(4): 201-206.

    Wang Z. Numerical simulation of the karst groundwater system evolution[J]. Geological Science and Technology Information, 2013, 32(4): 201-206(in Chinese with English abstract).
    [26]
    Anikeev A V, Leonenko M V. Forecast of sinkhole development caused by changes in hydrodynamic regime: Case study of Dzerzhinsk karst area[J]. Water Resources, 2014, 41(7): 819-832. doi: 10.1134/S0097807814070021
    [27]
    徐德威. 从岩溶水动力与河流关系看水库工程地质条件[J]. 人民珠江, 1983(3): 29-32. https://www.cnki.com.cn/Article/CJFDTOTAL-RMZJ198303005.htm

    Xu D W. Viewing reservoir engineering geological conditions from the relationship between karst hydrodynamic forces and rivers[J]. Pearl River, 1983(3): 29-32(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-RMZJ198303005.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(406) PDF Downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return