Volume 41 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
Zhu Changkun. Optimization of karst water monitoring network based on information entropy: A case study in typical groundwater source sites in Xuzhou[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 168-176. doi: 10.19509/j.cnki.dzkq.2022.0030
Citation: Zhu Changkun. Optimization of karst water monitoring network based on information entropy: A case study in typical groundwater source sites in Xuzhou[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 168-176. doi: 10.19509/j.cnki.dzkq.2022.0030

Optimization of karst water monitoring network based on information entropy: A case study in typical groundwater source sites in Xuzhou

doi: 10.19509/j.cnki.dzkq.2022.0030
  • Received Date: 09 Oct 2021
    Available Online: 02 Mar 2022
  • In view of the unreasonable layout of monitoring wells and heterogeneity and anisotropy of the karst aquifer monitoring system, mutual information-distance (T-D) and maximum information minimum redundancy (MIMR) models can be used to study the information redundancy of the monitoring network and the optimal monitoring well combination.Dinglou-Maocun and Qiligou in Xuzhou City were selected to do the research.The results show that: the data dispersion degree, information entropy, information transfer amount and information attenuation rate in Dinglou-Maocun are all greater than those in Qiligou.When ε is set to be 10-1, the effective transmission distance of water level information is 4.7 km and 4.8 km respectively, indicating the similar karst development degree and hydraulic conductivity of the two sites.By comparing the actual value and the theoretical value of the control area of monitoring well, it can be found that information redundancy exists in both two water source sites.The optimized number of monitoring wells in Dinglou-Maocun is 6, and the corresponding combination of monitoring wells is D1-D2-D4-D5-D7-D9, while the optimized number of monitoring wells is 5 and the corresponding combination of monitoring wells is Q1-Q3-Q4-Q5-Q7 in Qiligou.Compared to the original monitoring network, three monitoring wells are reduced in both two water source sites with 98.5% and 94.9% of the total information retention, 0.4% and 1.2% of control range decrease, 49.0% and 56.4% of the information redundancy reduction, respectively.It shows that the optimized monitoring network can provide the same amount of information and control range as the original site network, and significantly reduce information redundancy and monitoring costs.

     

  • loading
  • [1]
    Yang Y, Burn D H. An entropy approach to data collection network design[J]. Journal of Hydrology, 1994, 157(1/4): 307-324.
    [2]
    Husain T. Hydrologic uncertainty measure and network design[J]. Journal of the American Water Resources Association, 1989, 25(3): 527-534. doi: 10.1111/j.1752-1688.1989.tb03088.x
    [3]
    陈植华. 地下水观测网的若干问题与基于信息熵的研究方法[J]. 地学前缘, 2001, 8(1): 135-142. doi: 10.3321/j.issn:1005-2321.2001.01.017

    Chen Z H. Some confusions in groundwater monitoring network and the entropy method[J]. Earth Science Frontiers, 2001, 8(1): 135-142(in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2001.01.017
    [4]
    杨建青, 章树安, 陈喜, 等. 国内外地下水监测技术与管理比较研究[J]. 水文, 2013, 33(3): 18-24. doi: 10.3969/j.issn.1000-0852.2013.03.004

    Yang J Q, Zhang S A, Chen X, et al. Comparison between China and other countries on groundwater monitoring and management practices[J]. Journal of China Hydrology, 2013, 33(3): 18-24(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0852.2013.03.004
    [5]
    严宇红, 周政辉. 国家地下水监测工程站网布设成果综述[J]. 水文, 2017, 37(5): 74-78. doi: 10.3969/j.issn.1000-0852.2017.05.014

    Yan Y H, Zhou Z H. Introduction to network layout of national groundwater monitoring project[J]. Journal of China Hydrology, 2017, 37(5): 74-78(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0852.2017.05.014
    [6]
    孟祥帅. 区域地下水观测井网优化方法研究: 以沈阳市为例[D]. 北京: 中国地质大学(北京), 2012.

    Meng X S. Studies of optimal methods of the regional groundwater observation network: Taking Shenyang for example[D]. Beijing: China University of Geosciences (Beijing), 2012(in Chinese with English abstract).
    [7]
    卢海军. 北京市潮白河冲洪积扇地下水监测站网优化研究[D]. 北京: 中国地质大学(北京), 2018.

    Lu H J. The study on optimization of groundwater monitoring station network of alluvial-proluvial fan in Chaobai River, Beijing[D]. Beijing: China University of Geosciences (Beijing), 2018(in Chinese with English abstract).
    [8]
    田晓龙. 巩义市城区地下水评价及趋势分析[D]. 郑州: 华北水利水电大学, 2016.

    Tian X L. Groundwater evaluation and trend analysis in Gongyi City[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2016(in Chinese with English abstract).
    [9]
    张瑞钢, 钱家忠, 赵卫东, 等. 对应分析法在地下水化学特征分析中的应用[J]. 合肥工业大学学报: 自然科学版, 2008, 31(10): 1552-1555, 1560. doi: 10.3969/j.issn.1003-5060.2008.10.004

    Zhang R G, Qian J Z, Zhao W D, et al. Corresponding analysis of hydrochemical characteristics of groundwater[J]. Journal of Hefei University of Technology, 2008, 31(10): 1552-1555, 1560(in Chinese with English abstract). doi: 10.3969/j.issn.1003-5060.2008.10.004
    [10]
    Yang F G, Cao S Y, Liu X N, et al. Design of groundwater level monitoring network with ordinary Kriging[J]. Journal of Hydrodynamics, 2008, 20(3): 339-346. doi: 10.1016/S1001-6058(08)60066-9
    [11]
    陈植华, 陈刚. 基于信息熵技术对地下水观测网的层次分类: 以河北平原地下水观测网为例[J]. 地质科技情报, 2002, 21(1): 41-46. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200201011.htm

    Chen Z H, Chen G. Entropy-based grouping of groundwater monitoring networks[J]. Geological Science and Technology Information, 2002, 21(1): 41-46(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200201011.htm
    [12]
    Masoumi F, Kerachian R. Optimal redesign of groundwater quality monitoring networks: A case study[J]. Environmental Monitoring and Assessment, 2010, 161(1/4): 247-257.
    [13]
    Li C, Singh V P, Mishra A K. Entropy theory-based criterion for hydrometric network evaluation and design: Maximum information minimum redundancy[J]. Water Resources Research, 2012, 48(5): 1-15.
    [14]
    Nazeri T M, Khashei S A, Ramezani Y. Redesigning and monitoring groundwater quality and quantity networks by using the entropy theory[J]. Environmental Monitoring and Assessment, 2019, 191(4): 1-17.
    [15]
    邹胜章, 杨苗清, 陈宏峰, 等. 地下河系统水动态监测网络优化对比分析: 以桂林海洋-寨底地下河系统为例[J]. 地学前缘, 2019, 26(1): 326-335. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201901032.htm

    Zou S Z, Yang M Q, Chen H F, et al. Comparison and optimization of water dynamic monitoring network for underground river system: A case study of the Haiyang-Zhaidi underground river system, Guilin City[J]. Earth Science Frontiers, 2019, 26(1): 326-335(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201901032.htm
    [16]
    郭燕莎, 王劲峰, 殷秀兰. 地下水监测网优化方法研究综述[J]. 地理科学进展, 2011, 30(9): 1159-1166. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ201109013.htm

    Guo Y S, Wang J F, Yin X L. Review of the optimization methods for groundwater monitoring network[J]. Progress in Geography, 2011, 30(9): 1159-1166(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ201109013.htm
    [17]
    李大通, 罗雁. 中国碳酸盐岩分布面积测量[J]. 中国岩溶, 1983, 1(2): 147-150. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR198302008.htm

    Li D T, Luo Y. Measurement of carbonate rocks distribution area in China[J]. Carsologica Sinica, 1983, 1(2): 147-150(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR198302008.htm
    [18]
    卢海平, 张发旺, 赵春红, 等. 我国南北方岩溶差异[J]. 中国矿业, 2018, 27(增刊2): 317-319. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA2018S2085.htm

    Lu H P, Zhang F W, Zhao C H, et al. Differences between southern karst and northern karst besides scientific issues that need attention[J]. China Mining Magazine, 2018, 27(S2): 317-319(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA2018S2085.htm
    [19]
    江川, 肖德安. 岩溶地区地下水环境监测难点及解决思路[J]. 中国环境监测, 2014, 30(5): 110-113. doi: 10.3969/j.issn.1002-6002.2014.05.024

    Jiang C, Xiao D A. Difficulties and solutions of groundwater quality monitoring in karst area[J]. Environmental Monitoring in China, 2014, 30(5): 110-113(in Chinese with English abstract). doi: 10.3969/j.issn.1002-6002.2014.05.024
    [20]
    缪世贤, 黄敬军, 武鑫, 等. 徐州岩溶地质调查及其发育特征分析[J]. 水文地质工程地质, 2017, 44(2): 172-177. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201702026.htm

    Miao S X, Huang J J, Wu X, et al. Karst geological survey and analysis of its development characteristics in Xuzhou[J]. Hydrogeology & Engineering Geology, 2017, 44(2): 172-177(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201702026.htm
    [21]
    武鑫, 王艺霖, 黄敬军, 等. 徐州地区碳酸盐岩溶蚀特征及影响因素分析[J]. 地质科技情报, 2019, 38(3): 120-126. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903011.htm

    Wu X, Wang Y L, Huang J J, et al. Dissolution characteristics of carbonate and analysis of the key influence factors in Xuzhou region[J]. Geological Science and Technology Information, 2019, 38(3): 120-126(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903011.htm
    [22]
    周东来. 徐州市岩溶地下水运移规律的研究[J]. 地质灾害与环境保护, 2006, 17(4): 65-70. doi: 10.3969/j.issn.1006-4362.2006.04.014

    Zhou D L. Study on transport of karst groundwater of Xuzhou City[J]. Journal of Geological Hazards and Environment Preservation, 2006, 17(4): 65-70(in Chinese with English abstract). doi: 10.3969/j.issn.1006-4362.2006.04.014
    [23]
    Shannon C E. A mathematical theory of communication[J]. Bell System Technical Journal, 1948, 27(3): 379-423. doi: 10.1002/j.1538-7305.1948.tb01338.x
    [24]
    Alfonso L, Lobbrecht A, Price R. Information theory-based approach for location of monitoring water level gauges in polders[J]. Water Resources Research, 2010, 46(3): 1-14.
    [25]
    Alfonso L, Lobbrecht A, Price R. Optimization of water level monitoring network in polder systems using information theory[J]. Water Resources Research, 2010, 46(12): 1-13.
    [26]
    朱常坤, 梁杏. 多参数层序地层的边缘最优智能划分算法及其应用[J]. 地球物理学进展, 2015, 30(1): 466-470. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201501069.htm

    Zhu C K, Liang X. An edge detection optimum intelligent division method and its application for multi-parameter log data[J]. Progress in Geophysics, 2015, 30(1): 466-470(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201501069.htm
    [27]
    梁杏, 张婧玮, 蓝坤, 等. 江汉平原地下水化学特征及水流系统分析[J]. 地质科技通报, 2020, 39(1): 21-33. doi: 10.19509/j.cnki.dzkq.2020.0103

    Liang X, Zhang J W, Lan K, et al. Hydrochemical characteristics of groundwater and analysis of groundwater flow systems in Jianghan Plain[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 21-33(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0103
    [28]
    朱常坤, 梁杏, 刘绍华, 等. 利用连续小波变换方法对潜水位进行气压和潮汐改正[J]. 地质科技情报, 2014, 33(3): 169-174. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201403024.htm

    Zhu C K, Liang X, Liu S H, et al. Application of continuous wavelet transform to correct barometric and tidal response in the water table[J]. Geological Science and Technology Information, 2014, 33(3): 169-174(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201403024.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(215) PDF Downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return