Volume 41 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
Guo Xulei, Zhou Hong, Luo Mingming, Huang Kun, Kuang Ye, Zeng Yuanmeng, Chen Yifan, Zhang Suya. Characteristics and genesis of karst water flow system around Huangling anticline[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 328-340. doi: 10.19509/j.cnki.dzkq.2022.0033
Citation: Guo Xulei, Zhou Hong, Luo Mingming, Huang Kun, Kuang Ye, Zeng Yuanmeng, Chen Yifan, Zhang Suya. Characteristics and genesis of karst water flow system around Huangling anticline[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 328-340. doi: 10.19509/j.cnki.dzkq.2022.0033

Characteristics and genesis of karst water flow system around Huangling anticline

doi: 10.19509/j.cnki.dzkq.2022.0033
  • Received Date: 30 Nov 2021
    Available Online: 02 Mar 2022
  • The study of the karst water flow system is helpful for the reasonable evaluation and utilization of groundwater resources.In this paper, the spatial characteristics, hydrological dynamic response, temperature field, and conductivity characteristics of the typical karst water flow system were calculated and quantified by referring to the methods of hydrology research.Four groundwater systems, i.e., fan-shaped, branch-shaped, flat-shaped, and comb-shaped, were divided to comprehensively reflect the surface-underground karst characteristics of the karst flow system.The main pipelines of the first two are perpendicular to the stratigraphic trend, and the structural fractures play a role in catching water.The main pipelines of the latter two are parallel to the stratigraphic trend, and the horizontal fractures play a role in collecting water.The northwest, west, and south wings of the Huangling anticline are branch-shaped and flat-shaped, while the east and north wings are fan-shaped and flat-shaped water systems.The formation and regional differences of different groundwater systems are closely related to the spatial relationship and hierarchy of aquifer systems and water systems which show different dynamic characteristics.The fan-shaped and flat-shaped karst flow system are the most sensitive to rainfall response, while the comb-shaped karst flow system has the slowest response and attenuation process.Based on the obvious correlation between karst groundwater temperature and exposed elevation and circulation depth, the groundwater temperature line in the mountainous area of western Hubei province is established.This study could provide certain theoretical support for karst groundwater flow system research and local engineering practice.

     

  • loading
  • [1]
    梁杏, 张人权, 靳孟贵. 地下水流系统: 理论、应用、调查[M]. 北京: 地质出版社, 2015.

    Liang X, Zhang R Q, Jin M G, et al. Groundwater systems: Theory, application, investigation[M]. Beijing: Geological Publishing House, 2015(in Chinese).
    [2]
    罗明明, 尹德超, 张亮, 等. 南方岩溶含水系统结构识别方法初探[J]. 中国岩溶, 2015, 34(6): 543-550. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201506002.htm

    Luo M M, Yin D C, Zhang L, et al. Identifying methods of karst aquifer system structure in South China[J]. Carsologica Sinica, 2015, 34(6): 543-550(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201506002.htm
    [3]
    朱静静, 周宏. 水文地质剖面分析在岩溶水系统研究中的应用: 以鄂西响水洞岩溶水系统为例[J]. 安全与环境工程, 2017, 24(3): 1-7, 19. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201703002.htm

    Zhu J J, Zhou H. Application of hydrogeological profile analysis to karst water system: A case study on Xiangshuidong karst water system in western Hubei Province[J]. Safety and Environmental Engineering, 2017, 24(3): 1-7, 19(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201703002.htm
    [4]
    李然, 谢凯, 周宏. 浅循环岩溶水系统分析: 以香溪河流域百城向斜为例[J]. 安全与环境工程, 2015, 22(6): 11-16, 22. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201506003.htm

    Li R, Xie K, Zhou H. Analysis of shallow circulating karst water system: Based on Baicheng syncline in Xiangxi River basin[J]. Safety and Environmental Engineering, 2015, 22(6): 11-16, 22(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201506003.htm
    [5]
    范威, 于瑶, 江越潇, 等. 湖北省地下水流系统划分研究[J]. 资源环境与工程, 2020, 34(4): 565-570. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK202004017.htm

    Fan W, Yu Y, Jiang Y X, et al. Study on groundwater flow system division in Hubei Province[J]. Resources Environment & Engineering, 2020, 34(4): 565-570(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK202004017.htm
    [6]
    陈萍, 王明章. 基于地下水开发的岩溶地下水系统类型划分方案探讨[J]. 中国岩溶, 2015, 34(3): 234-237. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201503005.htm

    Chen P, Wang M Z. A classification scheme of karst groundwater systems based on groundwater exploitation[J]. Carsologica Sinica, 2015, 34(3): 234-237(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201503005.htm
    [7]
    赵瑞. 四川盆地南缘地形梯度带区域岩溶水系统研究[D]. 成都: 成都理工大学, 2016.

    Zhao R. Research on the system of regional karst water in the topographic gradient zone of the south edge of Sichuan Basin[D]. Chengdu: Chengdu University of Technology, 2016(in Chinese with English abstract).
    [8]
    吴慈华, 曹劲, 左丽敏. 鄂西南岩溶地下水系统划分和研究[J]. 资源环境与工程, 2018, 32(增刊1): 55-62, 68. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK2018S1011.htm

    Wu C H, Cao J, Zuo L M. Division of karst groundwater system in Southwest Hubei[J]. Resources Environment & Engineering, 2018, 32(S1): 55-62, 68(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK2018S1011.htm
    [9]
    潘晓东, 梁杏, 唐建生, 等. 黔东北高原斜坡地区4种岩溶地下水系统模式及特点: 基于地貌和蓄水构造特征[J]. 地球学报, 2015, 36(1): 85-93. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201501012.htm

    Pan X D, Liang X, Tang J S, et al. The patterns and characteristics of four karst groundwater systems in Northeast Guizhou slope zone based on the landscape and reservoir structure[J]. Acta Geoscientica Sinica, 2015, 36(1): 85-93(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201501012.htm
    [10]
    张人权, 周宏, 陈植华, 等. 山西郭庄泉岩溶水系统分析[J]. 地球科学: 中国地质大学学报, 1991, 16(1): 1-17. doi: 10.3321/j.issn:1000-2383.1991.01.002

    Zhang R Q, Zhou H, Chen Z H, et al. Karst water system analysis of Guozhuang Spring in Shanxi Province[J]. Earth Science: Journal of China University Geosciences, 1991, 16(1): 1-17(in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.1991.01.002
    [11]
    祝安, 祝进, 张朝晖. 喀斯特流域水系分形、分维问题[J]. 贵州师范大学学报: 自然科学版, 2000, 18(4): 5-8. https://www.cnki.com.cn/Article/CJFDTOTAL-NATR200004001.htm

    Zhu A, Zhu J, Zhang C H. Fractal and fractals dirnersion of karst water system[J]. Journal of Guizhou Normal University: Natural Sciences Edition, 2000, 18(4): 5-8(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-NATR200004001.htm
    [12]
    罗明明, 肖天昀, 陈植华, 等. 香溪河岩溶流域几种岩溶水系统的地质结构特征[J]. 水文地质工程地质, 2014, 41(6): 13-19, 25. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201406005.htm

    Luo M M, Xiao T J, Chen Z H, et al. Geological structure characteristics of several karst water systems in the Xiangxi River Karst basin[J]. Hydrogeology & Engineering Geology, 2014, 41(6): 13-19, 25(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201406005.htm
    [13]
    张亮, 陈植华, 周宏, 等. 典型岩溶泉水文地质条件的调查与分析: 以香溪河流域白龙泉为例[J]. 水文地质工程地质, 2015, 42(2): 31-37. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201502006.htm

    Zhang L, Chen Z H, Zhou H, et al. Investigation and analysis of the hydrogeological characteristics of the typical karst spring in the Xiangxi River basin: Exemplified by the Bailong Spring in Xingshan County of Hubei[J]. Hydrogeology & Engineering Geology, 2015, 42(2): 31-37(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201502006.htm
    [14]
    罗利川, 梁杏, 李扬, 等. 基于GMS的岩溶山区三维地下水流模式识别[J]. 中国岩溶, 2018, 37(5): 680-689. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201805005.htm

    Luo L C, Liang X, Li Y, et al. Identifying three-dimensional groundwater flow patterns in karst mountain areas based on GMS[J]. Carsologica Sinica, 2018, 37(5): 680-689(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201805005.htm
    [15]
    蔡昊, 陈植华, 周宏. 裂隙对雾龙洞岩溶发育及地下径流的影响分析[J]. 安全与环境工程, 2015, 22(2): 1-6, 38. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201502001.htm

    Cai H, Chen Z H, Zhou H. Impact analysis of fracture on the karst development and groundwater flow of Wulong Cave[J]. Safety and Environmental Engineering, 2015, 22(2): 1-6, 38(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201502001.htm
    [16]
    尹德超, 罗明明, 周宏, 等. 鄂西岩溶槽谷区地下河系统水资源构成及其结构特征[J]. 水文地质工程地质, 2015, 42(3): 13-18, 26. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201503005.htm

    Yin D C, Luo M M, Zhou H, et al. Water resources composition and structure characteristics of the underground river system in the karst ridge-trough in the western Hubei Province[J]. Hydrogeology & Engineering Geology, 2015, 42(3): 13-18, 26(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201503005.htm
    [17]
    郭绪磊, 陈乾龙, 黄琨, 等. 宜昌潮水洞岩溶间歇泉动态特征及成因[J]. 地球科学, 2020, 45(12): 4524-4534. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202012016.htm

    Guo X L, Chen Q L, Huang K, et al. The dynamic features and causes of the Chaoshuidong Siphonal Sping[J]. Hydrogeology & Engineering Geology, 2020, 45(12): 4524-4534(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202012016.htm
    [18]
    罗明明, 周宏, 郭绪磊, 等. 峡口隧道间歇性岩溶涌突水过程及来源解析[J]. 地质科技通报, 2021, 40(6): 246-254. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202106027.htm

    Luo M M, Zhou H, Guo X L, et al. Processes and sources identification of intermittent karst water inrush in Xiakou tunnel[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 246-254(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202106027.htm
    [19]
    Luo M M, Chen Z H, Yin D C, et al. Surface flood and underground flood in Xiangxi River Karst Basin: Characteristics, models, and comparisons[J]. Journal of Earth Science, 2016, 27(1): 15-21.
    [20]
    Luo M M, Chen Z H, Criss R E, et al. Dynamics and anthropogenic impacts of multiple karst flow systems in a mountainous area of South China[J]. Hydrogeology Journal, 2016, 24(8): 1993-2002.
    [21]
    张信宝, 刘彧, 王世杰, 等. 黄河、长江的形成演化及贯通时间[J]. 山地学报, 2018, 36(5): 661-668. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201805001.htm

    Zhang X B, Liu Y, Wang S J, et al. On the chronology of the Yellow River and the Yangtze Rivers[J]. Mountain Research, 2018, 36(5): 661-668(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201805001.htm
    [22]
    赵诚. 长江三峡河流袭夺与河流起源[J]. 长春地质学院学报, 1996(4): 69-74. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ604.012.htm

    Zhao C. River capture and origin of the Yangtze Gorges[J]. Journal of Changchun University of Earth Sciences, 1996(4): 69-74(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ604.012.htm
    [23]
    郭绪磊. 基于SAC改进模型的岩溶流域降水-径流过程模拟研究: 以宜昌泗溪流域为例[D]. 武汉: 中国地质大学(武汉), 2019.

    Guo X L. A case study on the simulation of precipitation and runoff process in karst basin based on modified SAC model[D]. Wuhan: China University of Geosciences(Wuhan), 2019(in Chinese with English abstract).
    [24]
    邓铭哲. 黄陵背斜及邻区构造建模[D]. 北京: 中国地质大学(北京), 2018.

    Deng M Z. Structural modeling of the Huangling anticline and its peripheral structural belt[D]. Beijing: China University of Geosciences(Beijing), 2018(in Chinese with English abstract).
    [25]
    徐大良, 彭练红, 刘浩, 等. 黄陵背斜中新生代多期次隆升的构造-沉积响应[J]. 华南地质与矿产, 2013, 29(2): 90-99. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC201302002.htm

    Xu D L, Peng L H, Liu H, et al. Meso-Cenozoic tectono-sedimentary response of mutiphased uplifts of Huangling anticline, Central China[J]. Geology and Mineral Resources of South China, 2013, 29(2): 90-99(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC201302002.htm
    [26]
    张婉婷. 鄂西黄陵断穹北部区域岩溶水系统特征及隧道工程适宜性探析[D]. 成都: 成都理工大学, 2016.

    Zhang W T. Karst water system analysis and its suitability with the tunnel engineering in the north of Huangling faulted dome[D]. Chengdu: Chengdu University of Technology, 2016(in Chinese with English abstract).
    [27]
    梁杏, 张婧玮, 蓝坤, 等. 江汉平原地下水化学特征及水流系统分析[J]. 地质科技通报, 2020, 39(1): 21-33. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202001004.htm

    Liang X, Zhang J W, Lan K, et al. Hydrochemical characteristics of groundwater and analysis of groundwater flow systems in Jianghan Plain[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 21-33 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202001004.htm
    [28]
    季怀松, 罗明明, 褚学伟, 等. 岩溶洼地内涝蓄水量与不同级次裂隙对溶质迁移影响的室内实验与模拟[J]. 地质科技通报, 2020, 39(5): 164-172. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202005020.htm

    Ji H S, Luo M M, Chu X W, et al. Laboratory experiment and simulation of solute transport affected by different grades of fissures and water storage of waterlogging in karst depression[J]. Bulletin of Geological Science and Technology, 2020, 39(5): 164-172 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202005020.htm
    [29]
    朱彪, 陈喜, 张志才, 等. 西南喀斯特流域枯季地下水电导率特征及水-岩作用分析[J]. 地球与环境, 2019, 47(4): 459-463. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201904007.htm

    Zhu B, Chen X, Zhang Z C, et al. Characteristics of groundwater conductivity in dry season and water rock interaction implications in a Southwest karst basin[J]. Earth and Environment, 2019, 47(4): 459-463(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201904007.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(421) PDF Downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return