Volume 41 Issue 3
May  2022
Turn off MathJax
Article Contents
Sun Minghang, Zhang Qizuan, Liu Demin, Sun Xingting, Lin Shan, Wu Xiangke, Liang Guoke, Li Yukun, Guan Yanwu, Li Yefei. Genesis and occurrence models of hot-dry geothermal resources in Guangxi[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 330-340. doi: 10.19509/j.cnki.dzkq.2022.0037
Citation: Sun Minghang, Zhang Qizuan, Liu Demin, Sun Xingting, Lin Shan, Wu Xiangke, Liang Guoke, Li Yukun, Guan Yanwu, Li Yefei. Genesis and occurrence models of hot-dry geothermal resources in Guangxi[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 330-340. doi: 10.19509/j.cnki.dzkq.2022.0037

Genesis and occurrence models of hot-dry geothermal resources in Guangxi

doi: 10.19509/j.cnki.dzkq.2022.0037
  • Received Date: 21 Jun 2021
  • As a kind of clean and renewable geothermal resource, dry hot rock (HDR) contains a huge potential for geothermal energy, which is of great development prospect and research value. To provide cases for the theoretical study on the generation and the analysis of occurrence conditions of dry-hot geothermal resources, and contribute the experience of Guangxi to the systematic summary of the genesis and occurrence models of HDR, this article selects Qinzhou and Hepu basins, which contain rich geothermal resources, as the research objects, using regional geological survey, thermophysical determination, radioactive element measurement, geothermal geochemistry, geophysical exploration and other comprehensive research methods, systematically summary the heat source mechanism, migration and heat accumulation model of two potential dry heat geothermal resource regions. Under the constraint of limited geological, geothermal well, thermophysical property, and magnetotelluric sounding(MT)data, establish an organic and unified geology-geophysics model of density, magnetism, electrical property parameters, and basic geological knowledge, an occurrence model of dry hot geothermal resources. The results suggest that under the restriction of the generation and evolution of the earth′s internal heat, Qinzhou Basin is classified as an active tectonic belt - sedimentary basin type of HDR resources area, which regards crust-mantle upwelling material as the main heat source; Hepu Basin is classified as the modern volcano-sedimentary basin type of HDR resources area, which regards local molten layer as the main heat source with the "low speed and high resistance" and secondary mantle branch / hot spot as the supply heat source. The research results provide a theoretical basis for the exploration of dry-hot geothermal resources and have demonstrative significance for the comparative study and fine evaluation of dry-hot geothermal resource potential areas in Guangxi.

     

  • loading
  • [1]
    汪集暘. 地热学及其应用[M]. 北京: 科学出版社, 2015.

    Wang J Y. Geothermics and its applications[M]. Beijing: China Science Publishing & Media Ltd., 2015(in Chinese).
    [2]
    Our World in Data. Installed geothermal energy capacity, 2019[EB/OL]. [2021-4-21]. https://ourworldindata.org/grapher/installed-geothermal-capacity,2020.
    [3]
    蔺文静, 刘志明, 马峰, 等. 我国陆区干热岩资源潜力估算[J]. 地球学报, 2012, 33(5): 807-811. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201205018.htm

    Lin W J, Liu Z M, Ma F, et al. An estimation of HDR resources in China′s mainland[J]. Acta Geoscientica Sinica, 2012, 33(5): 807-811(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201205018.htm
    [4]
    汪集旸, 胡圣标, 庞忠和, 等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 2012, 30(32): 25-31. doi: 10.3981/j.issn.1000-7857.2012.32.002

    Wang J Y, Hu S B, Pang Z H, et al. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J]. Science & Technology Review, 2012, 30(32): 25-31(in Chinese with English abstract). doi: 10.3981/j.issn.1000-7857.2012.32.002
    [5]
    孙明行, 刘德民, 康志强, 等. 桂东南地区干热型地热资源潜力分析[J]. 地学前缘, 2020, 27(1): 72-80. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001010.htm

    Sun M H, Liu D M, Kang Z Q, et al. Analysis of hot dry geothermal resource potential in southeastern Guangxi[J]. Earth Science Frontiers, 2020, 27(1): 72-80(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001010.htm
    [6]
    康志强, 张起钻, 管彦武, 等. 广西干热岩地热资源赋存条件分析[J]. 地学前缘, 2020, 27(1): 55-62. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001008.htm

    Kang Z Q, Zhang Q Z, Guan Y W, et al. Analysis on the occurrence condition of geothermal resources of hot dry rock in Guangxi[J]. Earth Science Frontiers, 2020, 27(1): 55-62(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001008.htm
    [7]
    马峰, 蔺文静, 郎旭娟, 等. 我国干热岩资源潜力区深部热结构[J]. 地质科技情报, 2015, 34(6): 176-181. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201506025.htm

    Ma F, Lin W J, Lang X J, et al. Deep geothermal structures of potential hot dry rock resources area in China[J]. Geological Science and Technology Information, 2015, 34(6): 176-181(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201506025.htm
    [8]
    Liu G H, Wang G L, Zhao Z H, et al. A new well pattern of cluster-layout for deep geothermal reservoirs: Case study from the Dezhou geothermal field, China[J]. Renewable Energy, 2020, 155: 484-499. doi: 10.1016/j.renene.2020.03.156
    [9]
    Guo C, Qin Y, Lu L L. Terrestrial heat flow and geothermal field characteristics in the Bide-Santang Basin, western Guizhou, South China[J]. Energy Exploration & Exploitation, 2018, 36(5): 1-22.
    [10]
    甘浩男, 王贵玲, 蔺文静, 等. 中国干热岩资源主要赋存类型与成因模式[J]. 科技导报, 2015, 33(19): 22-27. doi: 10.3981/j.issn.1000-7857.2015.19.002

    Gan H N, Wang G L, Lin W J, et al. Research on the occurrence types and genetic models of hot dry rock resources in China[J]. Science & Technology Review, 2015, 33(19): 22-27(in Chinese with English abstract). doi: 10.3981/j.issn.1000-7857.2015.19.002
    [11]
    蔺文静, 甘浩男, 王贵玲, 等. 我国东南沿海干热岩赋存前景及与靶区选址研究[J]. 地质学报, 2016, 90(8): 2043-2058. doi: 10.3969/j.issn.0001-5717.2016.08.031

    Lin W J, Gan H N, Wang G L, et al. Occurrence prospect of HDR and target site selection study in southeastern of China[J]. Acta Geologica Sinica, 2016, 90(8): 2043-2058(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2016.08.031
    [12]
    滕吉文, 司芗, 庄庆祥, 等. 漳州盆地精细壳、幔异常结构与潜在干热岩探讨[J]. 地球物理学报, 2019, 62(5): 1613-1632. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201905005.htm

    Teng J W, Si X, Zhuang Q X, et al. Fine structures of crust and mantle and potential hot dry rock beneath the Zhangzhou Basin[J]. Chinese Journal of Geophysics, 2019, 62(5): 1613-1632(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201905005.htm
    [13]
    唐显春, 王贵玲, 马岩, 等. 青海共和盆地地热资源热源机制与聚热模式[J]. 地质学报, 2020, 94(7): 2052-2065. doi: 10.3969/j.issn.0001-5717.2020.07.013

    Tang X C, Wang G L, Ma Y, et al. Geological model of heat source and accumulation for geothermal anomalies in the Gonghe Basin, northeastern Tibetan Plateau[J]. Acta Geologica Sinica, 2020, 94(7): 2052-2065(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2020.07.013
    [14]
    张森琦, 李旭峰, 宋健, 等. 共和盆地壳内部分熔融层存在的地球物理证据与干热岩资源区域性热源分析[J]. 地球科学, 2021, 46(4): 1416-1436. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202104016.htm

    Zhang S Q, Li X F, Song J, et al. Analysis on geophysical evidence for existence of partial melting layer in crust and regional heat source mechanism for hot dry rock resources of Gonghe Basin[J]. Earth Science, 2021, 46(4): 1416-1436(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202104016.htm
    [15]
    王登红, 陈毓川, 江彪, 等. 中国三叠纪大陆成矿体系[J]. 地学前缘, 2020, 27(2): 45-59. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202002005.htm

    Wang D H, Chen Y C, Jiang B, et al. Preliminary study on the Triassic continental mineralization system in China[J]. Earth Science Frontiers, 2020, 27(2): 45-59(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202002005.htm
    [16]
    邓希光, 陈志刚, 李献华, 等. 桂东南地区大容山-十万大山花岗岩带SHRIMP锆石U-Pb定年[J]. 地质论评, 2004, 50(4): 426-432. doi: 10.3321/j.issn:0371-5736.2004.04.014

    Deng X G, Chen Z G, Li X H, et al. SHRIMP U-Pb zircon dating of the Darongshan-Shiwandashan granitoid belt in Southeastern Guangxi, China[J]. Geological Review, 2004, 50(4): 426-432(in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.2004.04.014
    [17]
    Najman Y, Appel E, Boudagher-Fadel M, et al. Timing of India-Asia collision: Geological, biostratigraphic, and palaeomagnetic constraints[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B12): B12416. doi: 10.1029/2010JB007673
    [18]
    Wu F Y, Ji W Q, Wang J G, et al. Zircon U-Pb and Hf isotopic constraints on the onset time of Indina-Asia collision[J]. American Journal of Science, 2014, 324: 548-579.
    [19]
    李三忠, 曹现志, 王光增, 等. 太平洋板块中-新生代构造演化及板块重建[J]. 地质力学学报, 2019, 25(5): 642-677. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201905005.htm

    Li S Z, Cao X Z, Wang G Z, et al. Meso-Cenozoic tectonic evolution and plate reconstruction of the Pacific Plate[J]. Journal of Geomechanics, 2019, 25(5): 642-677(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201905005.htm
    [20]
    Taylor B, Hayes D E. Origin and history of the South China Sea Basin[M]. USA: American Geophysical Union(AGU), 2013.
    [21]
    姚伯初, 万玲. 南海岩石圈厚度变化特征及其构造意义[J]. 中国地质, 2010, 37(4): 888-899. doi: 10.3969/j.issn.1000-3657.2010.04.006

    Yao B C, Wan L. Variation of the lithospheric thickness in the South China Sea area and its tectonic significance[J]. Geology China, 2010, 37(4): 888-899(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2010.04.006
    [22]
    杨文健, 于红梅, 赵波, 等. 广西涠洲岛晚新生代玄武岩地幔源区及岩浆成因[J]. 岩石学报, 2020, 36(7): 2092-2110. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202007011.htm

    Yang W J, Yu H M, Zhao B, et al. Mantle sources and magma genesis of Late Cenozoic basalts in Weizhou Island, Guangxi, China[J]. Acta Petrologica Sinica, 2020, 36(7): 2092-2110(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202007011.htm
    [23]
    Rybach L. Radioactive heat flowproduction in rocks and its relation to other petrophysical parameters[J]. Pure and Applied Geophysics, 1976, 114(2): 309-318. doi: 10.1007/BF00878955
    [24]
    Smithson S B, Decker E R. A continental crustal model and its geothermal implications[J]. Elsevier, 1974, 22(3): 215-225.
    [25]
    Wright P M, Ward S H, Ross H P, et al. State-of-the-art geophysical exploration for geophysical for geothermal resources[J]. Geophysics, 1985, 50(12): 2: 666-2699. doi: 10.1190/1.1441889
    [26]
    刘德民, 张昌生, 孙明行, 等. 干热岩勘查评价指标与形成条件[J]. 地质科技通报, 2021, 40(3): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202103001.htm

    Liu D M, Zhang C S, Sun M H, et al. Evaluation indexes and formation conditions of hot dry rock exploration[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 1-11(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202103001.htm
    [27]
    王思琪, 张保建, 李燕燕, 等. 雄安新区高阳地热田东北部深部古潜山聚热机制[J]. 地质科技通报, 2021, 40(3): 12-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202103002.htm

    Wang S Q, Zhang B J, Li Y Y, et al. Heat accumulation mechanism of deep ancient buried hill in the northeast of Gaoyang geothermal field, Xiong′an New Area[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 12-21(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202103002.htm
    [28]
    陈金龙, 罗文行, 窦斌, 等. 涿鹿盆地三维多裂隙地质模型地温场数值模拟[J]. 地质科技通报, 2021, 40(3): 22-33. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202103003.htm

    Chen J L, Luo W X, Dou B, et al. Numerical simulation of geothermal field in a three-dimensional multi-fractured geological model of Zhuolu Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 22-33(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202103003.htm
    [29]
    Feng Y F, Zhang X X, Zhang B, et al. The geothermal formation mechanism in the Gonghe Basin: Discussion and analysis from the geological background[J]. Acta Geologica Sinica, 2018, 1(3): 331-345.
    [30]
    李林果, 李百祥. 从青海共和-贵德盆地与山地地温场特征探讨热源机制和地热系统[J]. 物探与化探, 2017, 41(1): 29-34. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201701005.htm

    Li L G, Li B X. A discussion on the heat source mechanism and geothermal system of Gonghe-Guide Basin and mountain geothermal field in Qinghai Province[J]. Geophysical & Geochemical Exploration, 2017, 41(1): 29-34(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201701005.htm
    [31]
    张森琦, 吴海东, 张杨, 等. 青海省贵德县热水泉干热岩体地质-地热地质特征[J]. 地质学报, 2020, 94(5): 1591-1605. doi: 10.3969/j.issn.0001-5717.2020.05.017

    Zhang S Q, Wu H D, Zhang Y, et al. Characteristics of regional and geothermal geology of the Reshuiquan HDR in Guide County, Qinghai Province[J]. Acta Geologica Sinica, 2020, 94(5): 1591-1605(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2020.05.017
    [32]
    Didana Y L, Thiel S, Heinson G. Magnetotelluric imaging of upper crustal partial melt at Tendaho graben in Afar, Ethiopia[J]. Geophysical Research Letters, 2014, 41(9): 3089-3095. doi: 10.1002/2014GL060000
    [33]
    杨晓松, 金振民. 壳内部分熔融低速层及其研究意义[J]. 地球物理学进展, 1998, 13(3): 3-5. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ803.003.htm

    Yang X S, Jin Z M. The low velocity zone resulted from crustal partial melting and its significance[J]. Progress in Geophysics, 1998, 13(3): 3-5(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ803.003.htm
    [34]
    Wang Q, Hawkesworth C J, Wyman D, et al. Pliocene-Quaternary crustal melting in central and northern Tibet and insights into crustal flow[J]. Nature Communications, 2016, 7: 1-11.
    [35]
    Kelsey D E. On ultrahigh-temperature crustal metamorphism[J]. Gondwana. Res., 2008(1): 1-29.
    [36]
    蔡学林, 朱介寿, 程先琼, 等. 南海复蘑菇状地幔低速柱结构及其地幔动力学[J]. 中国地质, 2010, 37(2): 268-279. doi: 10.3969/j.issn.1000-3657.2010.02.002

    Cai X L, Zhu J S, Cheng X Q, et al. The structure of the composite mushroom-shaped mantle plume in the South China Sea and its mantle dynamics[J]. Geology in China, 2010, 37(2): 268-279(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2010.02.002
    [37]
    Arevalo R, McDonough W F, Luong M. The K/U ratio of the silicate Earth: Insights into mantle composition, structure and thermal evolution[J]. Earth and Planetary Science Letters, 2008, 278(3): 361-369.
    [38]
    Chen D, Wyborn D. Habanero field tests in the Cooper Basin, Australia: A proof-of-concept for EGS[J]. Transactions-Geothermal Resources Council, 2009, 33: 140-145.
    [39]
    Maggi A, Jackson J A, Mckenzie D, et al. Earthquake focal depths, effective elastic thickness, and the strength of the continental lithosphere[J]. Geology, 2000, 28(6): 495-498. doi: 10.1130/0091-7613(2000)28<495:EFDEET>2.0.CO;2
    [40]
    熊亮萍, 高维安. 隆起与坳陷地区地温场的特点[J]. 地球物理学报, 1982(5): 448-456. doi: 10.3321/j.issn:0001-5733.1982.05.008

    Xiong L P, Gao W A. Characteristics of geotherm in uplift and depression[J]. Acta Geophysica Sinica, 1982(5): 448-456(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5733.1982.05.008
    [41]
    Petitjean S, Rabinowicz M, Grégoire M, et al. Differences between Archean and Proterozoic lithospheres: Assessment of the possible major role of thermal conductivity[J]. Geochemistry Geophysics Geosystems, 2006, 7(3): 3021-3047.
    [42]
    毛翔, 国殿斌, 罗璐, 等. 世界干热岩地热资源开发进展与地质背景分析[J]. 地质论评, 2019, 65(6): 1462-1472. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201906018.htm

    Mao X, Guo D B, o L, et al. The global development process of hot dry rock(enhanced geothermal system)and its geological background[J]. Geological Review, 2019, 65(6): 1462-1472(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201906018.htm
    [43]
    Lay T, Hernlund J, Buffett B A. Core-mantle boundary heat flow[J]. Nature Geoscience, 2008, 1(1): 25-32. doi: 10.1038/ngeo.2007.44
    [44]
    Furlong K P, Chapman D S. Heat flow, heat generation, and thermal state of the lithosphere[J]. Annual Review of Earth & Planetary Sciences, 2013, 41(1): 385-410.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(289) PDF Downloads(81) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return