Volume 41 Issue 3
May  2022
Turn off MathJax
Article Contents
Fan Qingchao, Xu Zhaokai, Sun Tianqi, Li Tiegang, Chang Fengming. Sediment source-to-sink processes of the southeastern Indian Ocean during the Late Eocene-Oligocene and their potential significance for paleoclimate[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 9-19. doi: 10.19509/j.cnki.dzkq.2022.0066
Citation: Fan Qingchao, Xu Zhaokai, Sun Tianqi, Li Tiegang, Chang Fengming. Sediment source-to-sink processes of the southeastern Indian Ocean during the Late Eocene-Oligocene and their potential significance for paleoclimate[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 9-19. doi: 10.19509/j.cnki.dzkq.2022.0066

Sediment source-to-sink processes of the southeastern Indian Ocean during the Late Eocene-Oligocene and their potential significance for paleoclimate

doi: 10.19509/j.cnki.dzkq.2022.0066
  • Received Date: 12 Jun 2021
  • Understanding the paleoclimate responses in Southern Ocean and its surrounding land can help us to better explore the major climate transition mechanisms in geological history and predict the response ofthe earth system to abrupt climate changes in the future, while, there is still a lack of research on the paleoclimatere sponse of the surrounding land in Southern Ocean.Based on the age framework, major, traceand rare earth element compositions of the deep-sea sediments at Site U1516 of the International Ocean Discovery Program (IODP) 369, we determined that the sediments were mainly from the southwest continent of Australia, and then reconstructed the chemical weathering history of the source area on the tectonic time scale.In addition, we combined with the previous research results to discuss the paleoclimate evolution of continents surrounding Southern Ocean during the Late Eocene-Oligocene climate transition period and its response toglobal climate changes and regional paleogeographic changes.During the Eocene-Oligocene transition (e.g., 34.1 to 33.6 Ma and 31.3 to 29.8 Ma), the paleoclimate in the source area was mainly controlled by the significant changes in the paleogeographic pattern of the adjacent area, which was characterized by the climate conditions tending to bedry and cold and the decrease of chemical weathering intensity on the land surface.During the period of 33.6 to 31.3 Ma and 29.8 to 25.2 Ma, the palaeoclimate of the source area mainly responded to global climate changes.In theformer stage, the paleoclimate changed from dry and cold to wet and hot, the intensity of chemical weathering on the land surface increased correspondingly; In the latter stage, the climate maintained in a relatively stable dry and cold state, the intensity of chemical weathering on the land surface is also weak.


  • loading
  • [1]
    王尹, 李祥辉, 刘玲. 古大气CO2浓度重建方法技术研究现状[J]. 地质科技情报, 2012, 31(2): 90-98. doi: 10.3969/j.issn.1000-7849.2012.02.015

    Wang Y, Li X H, Liu L. On methods and technologies for reconstruction of paleoatmospheric CO2 concentration[J]. Geological Science and Technology Information, 2012, 31(2): 90-98(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2012.02.015
    Katz M E, Cramer B S, Toggweiler J R, et al. Impact of antarctic circumpolar current development on Late Paleogene ocean structure[J]. Science, 2011, 332(6033): 1076-1079. doi: 10.1126/science.1202122
    Xu Z K, Wan S M, Colin C, et al. Enhanced terrigenous organic matter input and productivity on the western margin of the Western Pacific Warm Pool during the Quaternary sea-level lowstands: Forcing mechanisms and implications for the global carbon cycle[J]. Quaternary Science Reviews, 2020, 232: 106211. doi: 10.1016/j.quascirev.2020.106211
    Huber B T, Hobbs R W, Bogus K A, et al. Expedition 369 preliminary report: Australia Cretaceous climate and tectonics[R]. [S. l. ]: International Ocean Discovery Program, 2018.
    Exon N F, Kennett J P, Malone M J. Leg 189 synthesis: Cretaceous-Holocene history of the Tasmanian Gateway[J]. Proceedings of the Ocean Drilling Program, Scientific Results, 2004, 189: 1-37.
    Liu Z H, Pagani M, Zinniker D, et al. Global cooling during the Eocene-Oligocene climate transition[J]. Science, 2009, 323: 1187-1190. doi: 10.1126/science.1166368
    Gallagher S J, Wade B, Qianyu L, et al. Eocene to Oligocene high paleolatitude neritic record of Oi-1 glaciation in the Otway Basin, southeast Australia[J]. Global and Planetary Change, 2020, 191: 103218. doi: 10.1016/j.gloplacha.2020.103218
    Galeotti S, Deconto R, Naish T, et al. Antarctic Ice Sheet variability across the Eocene-Oligocene boundary climate transition[J]. Science, 2016, 352(6281): 76-80. doi: 10.1126/science.aab0669
    Zhang Y G, Pagani M, Liu Z, et al. A 40-million-year history of atmospheric CO2[J]. Philosophical Transactions of the Royal Society A, 2013, 371: 20130096. doi: 10.1098/rsta.2013.0096
    Westerhold T, Marwan N, Drury A J, et al. An astronomically dated record of Earth's climate and its predictability over the last 66 million years[J]. Science, 2020, 369(6509): 1383-1387. doi: 10.1126/science.aba6853
    拓守廷, 刘志飞. 始新世-渐新世界线的全球气候事件: 从"温室"到"冰室"[J]. 地球科学进展, 2003, 18(5): 691-696. doi: 10.3321/j.issn:1001-8166.2003.05.008

    Tuo S T, Liu Z F. Global climate event at the Eocene-Oligocene transition: From greenhouse to icehouse[J]. Advance in Earth Sciences, 2003, 18(5): 691-696(in Chinese with English abstract). doi: 10.3321/j.issn:1001-8166.2003.05.008
    江湉, 贾建忠, 邓丽君, 等. 古近纪重大气候事件及其生物响应[J]. 地质科技情报, 2012, 31(3): 31-38. doi: 10.3969/j.issn.1000-7849.2012.03.005

    Jiang T, Jia J Z, Deng L J, et al. Significant climate events in Paleogene and their biotic response[J]. Geological Science and Technology Information, 2012, 31(3): 31-38(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2012.03.005
    Kennett J P, Shackleton N J. Oxygen isotopic evidence for the development of the psychrosphere 38 Myr ago[J]. Nature, 1976, 260(5551): 513-515. doi: 10.1038/260513a0
    Scher H D, Whittaker J M, Williams S E, et al. Onset of Antarctic Circumpolar Current 30 million years ago as Tasmanian Gateway aligned with westerlies[J]. Nature, 2015, 523(7562): 580-583. doi: 10.1038/nature14598
    Pearson P N, Foster G L, Wade B S. Atmospheric carbon dioxide through the Eocene-Oligocene climate transition[J]. Nature, 2009, 461(7267): 1110-1113. doi: 10.1038/nature08447
    Deconto R M, Pollard D. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2[J]. Nature, 2003, 421(6920): 245-249. doi: 10.1038/nature01290
    Sijp W P, England M H, Toggweiler J R. Effect of ocean gateway changes under greenhouse warmth[J]. Journal of Climate, 2009, 22(24): 6639-6652. doi: 10.1175/2009JCLI3003.1
    Scher H D, Bohaty S M, Zachos J C, et al. Two-stepping into the icehouse: East Antarctic weathering during progressive ice-sheet expansion at the Eocene-Oligocene transition[J]. Geology, 2011, 39(4): 383-386. doi: 10.1130/G31726.1
    Zachos J C, Quinn T M, Salamy K A. High-resolution(104 years) deep-sea foraminiferal stable isotope records of the Eocene-Oligocene climate transition[J]. Paleoceanography, 1996, 11(3): 353-387.
    肖国桥, 张仲石, 姚政权. 始新世-渐新世气候转变研究进展[J]. 地质论评, 2012, 58(1): 91-105. doi: 10.3969/j.issn.0371-5736.2012.01.009

    Xiao G Q, Zhang Z S, Yao Z Q. The Eocene-Oligocene climate transition: Review of recent progress[J]. Geological Review, 2012, 58(1): 91-105(in Chinese with English abstract). doi: 10.3969/j.issn.0371-5736.2012.01.009
    Houben A J P, Bijl P K, Pross J, et al. Reorganization of southern ocean plankton ecosystem at the onset of Antarctic Glaciation[J]. Science, 2013, 340(6310): 341-344.
    Scotese C. Palaomap paleoatlas for gplates and the paleodataplotter program[C]//Anon. 50th Annual GSA North-Central Section Meeting. [S. l. ]: [s. n. ], 2016.
    Taylor S R, Mclennan S M. The continental crust: Its composition and evolution[J]. The Journal of Geology, 1985, 94(4): 57-72.
    Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299: 715-717. doi: 10.1038/299715a0
    Wan S M, Clift P D, Li A C, et al. Geochemical records in the South China Sea: Implications for East Asian summer monsoon evolution over the last 20 Ma[J]. Geological Society London Special Publications, 2010, 342(1): 245-263. doi: 10.1144/SP342.14
    Chen H J, Xu Z K, Lim D, et al. Geochemical records of the provenance, silicate weathering/erosion from the eastern Arabian Sea and their responses to the Indian summer monsoon since the Mid-Pleistocene[J]. Paleoceanography and Paleoclimatology, 2020, 35(4): e2019PA003732.
    Jin Z D, Wang S M, Shen J, et al. Chemical weathering since the little ice age recorded in lake sediments: A high-resolution proxy of past climate[J]. Earth Surface Processes and Landforms, 2001, 26(7): 775-782. doi: 10.1002/esp.224
    Wei G J, Li X H, Liu Y, et al. Geochemical record of chemical weathering and monsoon climate change since the Early Miocene in the South China Sea[J]. Paleoceanography, 2006, 21: PA4214.
    Smithies R, Spaggiari C, Kirkland C. Building the crust of the Albany-Fraser Orogen: Constraints from granite geochemistry[R]. [S. l. ]: Geological Survey of Western Australia, Report 15, 2015.
    Wilde S, Nelson D. Geology of the western Yilgarn Craton and Leeuwin Complex[R]. [S. l. ]: Geological Survey of Western Australia 15, 2001: 41.
    Chen S F, Riganti A, Wyche S, et al. Lithostratigraphy and tectonic evolution of contrasting greenstone successions in the central Yilgarn Craton, Western Australia[J]. Precambrian Research, 2003, 127: 249-266. doi: 10.1016/S0301-9268(03)00190-6
    Qiu Y, Mcnaughton N, Groves D, et al. First record of 1.2 Ga quartz dioritic magmatism in the Archaean Yilgarn Craton, Western Australia, and its significance[J]. Australian Journal of Earth Sciences, 1999, 46: 421-428. doi: 10.1046/j.1440-0952.1999.00715.x
    Pyle D G, Christie D M, Mahoney J J, et al. Geochemistry and geochronology of ancient southeast Indian and southwest Pacific seafloor[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B11): 22261-22282. doi: 10.1029/95JB01424
    Zhao D B, Wan S M, Clift P D, et al. Provenance, sea-level and monsoon climate controls on silicate weathering of Yellow River sediment in the northern Okinawa Trough during late last glaciation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 490: 227-239. doi: 10.1016/j.palaeo.2017.11.002
    林旭, 赵希涛, 吴中海, 等. 渤海湾周缘主要河流钾长石物源示踪指标研究[J]. 地质科技通报, 2020, 39(6): 10-18. doi: 10.19509/j.cnki.dzkq.2020.0602

    Lin X, Zhao X T, Wu Z H, et al. Source tracing elements of K-feldspars of main rivers around Bohai Bay Basin[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 10-18(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0602
    Exon N F, Kennett J P, Malone M J. The Cenozoic southern ocean: Tectonics, sedimentation, and climate change between Australia and Antarctica[M]. Washington D C: American Geophysical Union Geophysical Monograph Series, 2004: 151.
    Williams S E, Whittaker J M, Miiller R D. Full-fit, palinspastic reconstruction of the conjugate Australian-Antarctic margins[J]. Tectonics, 2011, 30(6): 1-21.
    Müller R D, Seton M, Zahirovic S, et al. Ocean basin evolution and global-scale plate reorganization events since pangea breakup[J]. Annual Review of Earth and Planetary Sciences, 2016, 44(1): 107-138. doi: 10.1146/annurev-earth-060115-012211
    Gallagher S, Fulthorpe C, Bogus K, et al. Expedition 356 summary[R]. [S. l. ]: International Ocean Discovery Program, 2017.
    Hill R S. History of the Australian vegetation: Cretaceous to recent[M]. Cambridge: Cambridge University Press, 1994.
    Direen N G, Cohen B, Maas R, et al. Naturaliste Plateau: Constraints on the timing and evolution of the Kerguelen large igneous province and its role in Gondwana breakup[J]. Australian Journal of Earth Sciences, 2017, 64(1): 851-869.
    Cawood P, Nemchin A. Provenance record of a rift basin: U/Pb ages of detrital zircons from the Perth Basin, Western Australia[J]. Sedimentary Geology, 2000, 134: 209-234. doi: 10.1016/S0037-0738(00)00044-0
    Descourvieres C, Douglas G, Leyland L, et al. Geochemical reconstruction of the provenance, weathering and deposition of detrital-dominated sediments in the Perth Basin: The Cretaceous Leederville Formation, southwest Australia[J]. Sedimentary Geology, 2011, 236(1/2): 62-76.
    Dillinger A, George A D, Parra-Avila L A. Early Permian sediment provenance and paleogeographic reconstructions in southeastern Gondwana using detrital zircon geochronology(Northern Perth Basin, Western Australia)[J]. Gondwana Research: International Geoscience Journal, 2018, 59: 57-75.
    Olierook H K, Barham M, Fitzsimons I C, et al. Tectonic controls on sediment provenance evolution in rift basins: Detrital zircon U-Pb and Hf isotope analysis from the Perth Basin, Western Australia[J]. Gondwana Research, 2019, 66: 126-142. doi: 10.1016/j.gr.2018.11.002
    Lee E Y, Wolfgring E, Tejada M L, et al. Early Cretaceous subsidence of the Naturaliste Plateau defined by a new record of volcaniclastic-rich sequence at IODP Site U1513[J]. Gondwana Research, 2020, 82: 1-11. doi: 10.1016/j.gr.2019.12.007
    Cassidy K, Champion D, Krapez B, et al. A revised geological framework for the Yilgarn Craton, Western Australia[R]. [S. l. ]: Geological Survey of Western Australia: Record 8, 2006.
    张春宇, 管树巍, 吴林, 等. 塔西北地区下寒武统碳酸盐地球化学特征及其古环境意义: 以舒探1井为例[J]. 地质科技通报, 2021, 40(5): 99-111. doi: 10.19509/j.cnki.dzkq.2021.0508

    Zhang C Y, Guan S W, Wu L, et al. Geochemical characteristics and its paleo-environmental significance of the Lower Cambrian carbonate in the northwestern Tarim Basin: A case study of Well Shutan-1[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 99-111(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0508
    Xu Z K, Lim D, Li T G, et al. REEs and Sr-Nd isotope variations in a 20 ky-sediment core from the middle Okinawa Trough, East China Sea: An in-depth provenance analysis of siliciclastic components[J]. Marine Geology, 2019, 415: 105970. doi: 10.1016/j.margeo.2019.105970
    柏道远, 蒋启生, 李彬, 等. 湘东北冷家溪群沉积岩地球化学特征及其构造意义[J]. 地质科技通报, 2021, 40(1): 1-13. doi: 10.19509/j.cnki.dzkq.2021.0017

    Bo D Y, Jiang Q S, Li B, et al. Geochemistry and tectonic implication of the sedimentary rocks in Lengjiaxi Group in northeastern Hunan[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 1-13(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0017
    Storey M. Lower Cretaceous volcanic rocks on continental margins and their relationship to the Kerguelen Plateau[J]. Proceedings of the Ocean Drilling Program Scientific Results, 1992, 120: 33-53.
    Fedo C M, Nesbitt H W, Young G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance[J]. Geology, 1995, 23(10): 921-924. doi: 10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2
    冯连君, 储雪蕾, 张启锐, 等. 化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用[J]. 地学前缘, 2003, 10(4): 539-544. doi: 10.3321/j.issn:1005-2321.2003.04.019

    Feng L J, Chu X L, Zhang Q R, et al. CIA(chemical index of alteration) and its applications in the Neoproterozoic clastic rocks[J]. Earth Science Frontiers, 2003, 10(4): 539-544(in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2003.04.019
    Young G M, Nesbitt H W. Paleoclimatology and provenance of the glaciogenic Gowganda Formation(Paleoproterozoic), Ontario, Canada: A chemostratigraphic approach[J]. Geological Society of America Bulletin, 1999, 111(2): 264-274. doi: 10.1130/0016-7606(1999)111<0264:PAPOTG>2.3.CO;2
    Cai M J, Xu Z K, Clift P D, et al. Depositional history and indian summer monsoon controls on the silicate weathering of sediment transported to the eastern Arabian Sea: Geochemical records from IODP site U1456 since 3.8 Ma[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(9): 4336-4353. doi: 10.1029/2018GC008157
    Xu Z K, Li T G, Clift P D, et al. Bathyal records of enhanced silicate erosion and weathering on the exposed Luzon shelf during glacial lowstands and their significance for atmospheric CO2 sink[J]. Chemical Geology, 2017, 476: 302-315.
    徐兆凯, 常凤鸣, 李铁刚, 等. 24 ka来冲绳海槽北部沉积物来源的高分辨率常量元素记录[J]. 海洋地质与第四纪地质, 2012, 32(4): 73-82. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201204013.htm

    Xu Z K, Chang F M, Li T G, et al. Provenance of sediments in the northern Okinawa trough over the last 24 ka: High resolution record from major elements[J]. Marine Geology and Quaternary Geology, 2012, 32(4): 73-82(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201204013.htm
    Groeneveld J, Henderiks J, Renema W, et al. Australian shelf sediments reveal shifts in Miocene Southern Hemisphere westerlies[J]. Science Advances, 2017, 3: e1602567. doi: 10.1126/sciadv.1602567
    Kuhnt W, Holbourn A, Xu J, et al. Southern Hemisphere control on Australian monsoon variability during the Late Deglaciation and Holocene[J]. Nature Communication, 2015, 6: 5916. doi: 10.1038/ncomms6916
    Wan S M, Clift P D, Li A C, et al. Tectonic and climatic controls on long-term silicate weathering in Asia since 5 Ma[J]. Geophysical Research Letters, 2012, 39(15): L15611.
    Li J W, Vasconcelos P. Cenozoic continental weathering and its implications for the palaeoclimate: Evidence from 40Ar/39Ar geochronology of supergene K-Mn oxides in Mt Tabor, central Queensland, Australia[J]. Earth and Planetary Science Letters, 2002, 200: 223-239. doi: 10.1016/S0012-821X(02)00594-0
    Clift P D, Wan S M, Blusztajn J. Reconstructing chemical weathering, physical erosion and monsoon intensity since 25 Ma in the northern South China Sea: A review of competing proxies[J]. Earth-Science Reviews, 2014, 130: 86-102. doi: 10.1016/j.earscirev.2014.01.002
    Stein R, Robert C. Siliciclastic sediments at sites 588, 590, and 591: Neogene and Paleogene evolution in the southwest Pacific and Australian climate[J]. Initial Reports Deep Sea Drilling Project, 1985, 90(16): 1437-1455.
    Bohaty S M, Zachos J C, Delaney M L. Foraminiferal Mg/Ca evidence for Southern Ocean cooling across the Eocene-Oligocene transition[J]. Earth and Planetary Science Letters, 2012, 317/318: 251-261. doi: 10.1016/j.epsl.2011.11.037
    Miller K G, Browning J V, Schmelz W J, et al. Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records[J]. Science Advances, 2020, 6: eaaz1346.
    Martin H A. Cenozoic climatic change and the development of the arid vegetation in Australia[J]. Journal of Arid Environments, 2006, 66(3): 533-563.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(429) PDF Downloads(182) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint