Citation: | Ge Yu, Shi Zhiqiang. Sinemurian-Pliensbachian boundary event (Early Jurassic): Current status and future challenges[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 218-225. doi: 10.19509/j.cnki.dzkq.2022.0071 |
The Lower Jurassic is composed of the Hettangian, Sinemurian, Pliensbachian and Toarcian, among which the Toarcian oceanic anoxic events (T-OAE) have been widely studied. Depositions of black shales and negative excursions of both
[1] |
Schlanger S O, Jenkyns H C. Cretaceous oceanic anoxic events: Causes and consequences[J]. Geologie En Mijnbouw, 1976, 55(3): 179-184.
|
[2] |
Jenkyns H C. Geochemistry of oceanic anoxic events[J]. Geochem. Geophys. Geosyst., 2010, 11(3): 1-30.
|
[3] |
Mchone G J. Broad-terrane Jurassic flood basalts across northeastern North America[J]. Geology, 1996, 24(4): 319-322. doi: 10.1130/0091-7613(1996)024<0319:BTJFBA>2.3.CO;2
|
[4] |
Marzoli A, Renne P, Piccirllo E M, et al. Extensive 200-million-year-old continental flood basalts of the Central Atlantic magmatic province[J]. Science, 1999, 284: 616-618. doi: 10.1126/science.284.5414.616
|
[5] |
Schöllhorn I, Adatte T, van de Schootbrugge B, et al. Climate and environmental response to the break-up of Pangea during the Early Jurassic (Hettangian-Pliensbachian): The Dorset coast (UK) revisited[J]. Global and Planetary Change, 2020, 185: 1-22.
|
[6] |
谭丽娟, 师萌, 葛毓柱, 等. 三叠系-侏罗系环境变化及界线研究方法综述[J]. 地球科学与环境学报, 2018, 40(3): 285-300. doi: 10.3969/j.issn.1672-6561.2018.03.006
Tan L J, Shi M, Ge Y Z, et al. Revive on Triassic-Jurassic environment changes and boundary research methods[J]. Journal of Earth Sciences and Environment, 2018, 40(3): 285-300(in Chinese with English abstract). doi: 10.3969/j.issn.1672-6561.2018.03.006
|
[7] |
Jenkyns H C. The Early Toarcian and Cenomanian-Turonian anoxic events in Europe: Comparisons and contrasts[J]. Geologische Rundschau, 1985, 74(3): 505-518. doi: 10.1007/BF01821208
|
[8] |
Jenkyns H C. The Early Toarcian (Jurassic) anoxic event: Stratigraphic, sedimentary, and geochemical evidence[J]. American Journal of Science, 1988, 288(2): 101-151. doi: 10.2475/ajs.288.2.101
|
[9] |
Jourdan F, Féraud G, Bertrand H, et al. The 40Ar/39Ar ages of the sill complex of the Karoo large igneous province: Implications for the Pliensbachian-Toarcian climate change[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(6): 1-20.
|
[10] |
Korte C, Hesselbo S P. Shallow marine carbon and oxygen isotope and elemental records indicate icehouse-greenhouse cycles during the Early Jurassic[J]. Paleoceanography, 2011, 26(4): 1-18.
|
[11] |
Lu J, Zhou K, Yang M, et al. Terrestrial organic carbon isotopic composition (δ13Corg) and environmental perturbations linked to Early Jurassic volcanism: Evidence from the Qinghai-Tibet Plateau of China[J]. Global and Planetary Change, 2020, 195: 103331. doi: 10.1016/j.gloplacha.2020.103331
|
[12] |
杨競红, 蒋少涌, 凌洪飞, 等. 黑色页岩与大洋缺氧事件的Re-Os同位素示踪与定年研究[J]. 地学前缘, 2005, 12(2): 143-150. doi: 10.3321/j.issn:1005-2321.2005.02.016
Yang J H, Jiang S Y, Ling H F, et al. Re-Os isotope tracing and dating of black shales and oceanic anoxic events[J]. Earth Science Frontiers, 2005, 12(2): 143-150(in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2005.02.016
|
[13] |
于宁, 彭伟, 陈友智, 等. 黔东北梵净山地区沥青Re-Os同位素年龄对油气成藏年代的约束[J]. 地质科技通报, 2021, 40(5): 64-70. doi: 10.19509/j.cnki.dzkq.2021.0505
Yu N, Peng W, Chen Y Z, et al. Constraint of the isotopic age of asphalt Re-Os on the age of hydrocarbon accumulation in Fanjingshan area in Northeast Guizhou[J]. Bulletion of Geological and Technology, 2021, 40(5): 64-70(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0505
|
[14] |
Xu W, Ruhl M, Jenkyns H C, et al. Carbon sequestration in an expanded lake system during the Toarcian oceanic anoxic event[J]. Nature Geoscience, 2017, 10(2): 129. doi: 10.1038/ngeo2871
|
[15] |
Price G D, Baker S J, Van DeVelde J H, et al. High-resolution carbon cycle and seawater temperature evolution during the Early Jurassic (Sinemurian-Early Pliensbachian)[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(10): 3917-3928. doi: 10.1002/2016GC006541
|
[16] |
Peti L, Thibault N, Clémence M E, et al. Sinemurian-Pliensbachian calcareous nannofossil biostratigraphy and organic carbon isotope stratigraphy in the Paris Basin: Calibration to the ammonite biozonation of NW Europe[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 468: 142-161. doi: 10.1016/j.palaeo.2016.12.004
|
[17] |
Ruhl M, Hesselbo S P, Hinnov L, et al. Astronomical constraints on the duration of the Early Jurassic Pliensbachian Stage and global climatic fluctuations[J]. Earth & Planetary Science Letters, 2016, 455: 149-165. doi: 10.3969/j.issn.1000-3274.2016.02.015
|
[18] |
Jenkyns H C, Jones C E, Grcke D R, et al. Chemostratigraphy of the Jurassic System: Applications, limitations and implications for palaeoceanography[J]. Journal of the Geological Society, 2002, 159(4): 351-378. doi: 10.1144/0016-764901-130
|
[19] |
Masetti D, Claps M, Giacometti A, et al. The Calcari Frigi Formation of the Trento Platform (Early and Middle Lias, Venetian Prealps)[J]. AttiTicinensi di Scienzedella Terra, 1998, 40(1): 139-183.
|
[20] |
Picotti V, Cobianchi M. Jurassic periplatform sequences of the eastern Lombardian Basin (Southern Alps): The deep-sea record of the tectonic evolution, growth and demise history of a carbonate platform[J]. Earth Planets & Space, 1996, 48(1): 171-219.
|
[21] |
Franceschi M, Dal Corso J, Posenato R, et al. Early Pliensbachian (Early Jurassic) C-isotope perturbation and the diffusion of the Lithiotis Fauna: Insights from the western Tethys[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 410(1): 255-263.
|
[22] |
Storm M S, Hesselbo S P, Jenkyns H C, et al. Orbital pacing and secular evolution of the Early Jurassic carbon cycle[J]. Proceedings of the National Academy of Sciences, 2020, 117(8): 1-9.
|
[23] |
Franceschi M, Jing X, Shi Z Q, et al. High-resolution record of multiple organic-carbon-isotope excursions in lacustrine deposits of Upper Sinemurian through Pliensbachian (Early Jurassic) from the Sichuan Basin, China[J/OL]. Geological Society of America Bulletin, 2022: 1-15.
|
[24] |
Ziegler P A. Geological atlas of western and central Europe[M]. London: Shell Internationale Petroleum Maatschappij, 1990.
|
[25] |
Bjerrum C J, Surlyk F, Callomon J H, et al. Numerical paleoceanographic study of the Early Jurassic Transcontinental Laurasian Seaway[J]. Paleoceanography, 2001, 16(4): 390-404. doi: 10.1029/2000PA000512
|
[26] |
Percival L, Cohen A S, Davies M K, et al. Osmium isotope evidence for two pulses of increased continental weathering linked to Early Jurassic volcanism and climate change[J]. Geology, 2016, 44(9): 759-762. doi: 10.1130/G37997.1
|
[27] |
Copestake P, Johnson B. Lower Jurassic Foraminifera from the Llanbedr (Mochras Farm) Borehole[J]. North Wales, UK. Monogr. Palaeontogr., 2014, 167(1): 1-403.
|
[28] |
Woodland A W. The Llanbedr (Mochras Farm) Borehole[M]. [S. l. ]: Institute of Geological Sciences, 1971.
|
[29] |
Franceschi M, Dal Corso J, Cobianchi M, et al. Tethyan carbonate platform transformations during the Early Jurassic (Sinemurian-Pliensbachian, Southern Alps): Comparison with the Late Triassic Carnian Pluvial Episode[J]. Geological Society of America Bulletin, 2019, 131(7/8): 1255-1275.
|
[30] |
Gomez J J, Comas-Rengifo M J, Goy A. Palaeoclimatic oscillations in the Pliensbachian (Lower Jurassic) of the Asturian Basin (Northern Spain)[J]. Climate of the Past, 2016;12(5): 1199-1214. doi: 10.5194/cp-12-1199-2016
|
[31] |
Duarte L V, Comas-Rengifo M J, Silva R L, et al. Carbon isotope stratigraphy and ammonite biochronostratigraphy across the Sinemurian-Pliensbachian boundary in the western Iberian margin[J]. Bulletin of Geosciences, 2014, 89(4): 719-736.
|
[32] |
Lu Y Z, Deng S H. Palaeoclimate around the Triassic-Jurassic boundary in southern margin of Junggar Basin[J]. Journal of Palaeogeography, 2009, 11(6): 652-660.
|
[33] |
李英强, 何登发. 四川盆地及邻区早侏罗世构造-沉积环境与原型盆地演化[J]. 石油学报, 2014, 35(2): 219-232. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201402002.htm
Li Y Q, He D F. Evolution of tectonic-depositional environment and prototype basins of the Early Jurassic in Sichuan Basin and adjacent areas[J]. Acta Petrolei Sinica, 2014, 35(2): 219-232(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201402002.htm
|
[34] |
文芠, 赵兵. 四川蒲江-雅安地区自流井组地层特征及沉积相[J]. 地层学杂志, 2010, 34(2): 219-224. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201002017.htm
Weng W, Zhao B. Stratigraphic characteristics and sedimentary facies of Ziliujing Formation in Pujiang-Ya'an area, Sichuan[J]. Journal of Stratigraphy, 2010, 34(2): 219-224(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201002017.htm
|
[35] |
Weissert H, Lini A, Fllmi K B, et al. Correlation of Early Cretaceous carbon isotope stratigraphy and platform drowning events: A possible link?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1998, 137(3): 189-203.
|
[36] |
Woodfine R G, Jenkyns H C, Sarti M, et al. The response of two Tethyan carbonate platforms to the Early Toarcian (Jurassic) oceanic anoxic event: Environmental change and differential subsidence[J]. Sedimentology, 2008, 55(4): 1011-1028. doi: 10.1111/j.1365-3091.2007.00934.x
|
[37] |
Dal Corso J, Mietto P, Newton R J, et al. Discovery of a major negative δ13C spike in the Carnian (Late Triassic) linked to the eruption of Wrangellia flood basalts[J]. Geology, 2012, 40(1): 79-82. doi: 10.1130/G32473.1
|
[38] |
Dal Corso J, Gianolla P, Rigo M, et al. Multiple negative carbon-isotope excursions during the Carnian Pluvial Episode (Late Triassic)[J]. Earth-Science Reviews, 2018, 185: 732-750. doi: 10.1016/j.earscirev.2018.07.004
|
[39] |
Sun Y D, Wignall P B, Joachimski M M, et al. Climate warming, euxinia and carbon isotope perturbations during the Carnian (Triassic) crisis in South China[J]. Earth and Planetary Science Letters, 2016, 444(1): 88-100.
|
[40] |
Dal Corso J, Gianolla P, Newton R J, et al. Carbon isotope records reveal synchronicity between carbon cycle perturbation and the "Carnian Pluvial Event" in the Tethys realm (Late Triassic)[J]. Global & Planetary Change, 2015, 127: 79-90.
|
[41] |
Mueller S, Hounslow M W, Kürschner W M. Integrated stratigraphy and palaeoclimate history of the Carnian Pluvial Event in the Boreal realm: New data from the%Upper Triassic Kapp Toscana Group in central Spitsbergen (Norway)[J]. Journal of the Geological Society, 2016, 173(1): 186-202. doi: 10.1144/jgs2015-028
|
[42] |
Mueller S, Krystyn L, Kurschner W M. Climate variability during the Carnian Pluvial Phase: A quantitative palynological study of the Carnian sedimentary succession at Lunz am See, Northern Calcareous Alps, Austria[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 441(1): 198-211.
|
[43] |
Masetti D, Figus B, Jenkyns H C, et al. Carbon-isotope anomalies and demise of carbonate platforms in the Sinemurian (Early Jurassic) of the Tethyan region: Evidence from the southern Alps (Northern Italy)[J]. Geological Magazine, 2016, 154: 1-26.
|
[44] |
Riding J B, Leng M J, Kender S, et al. Isotopic and palynological evidence for a new Early Jurassic environmental perturbation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 374(1): 16-27.
|
[45] |
Diefendorf A F, Mueller K E, Wing S L, et al. Global patterns in leaf 13C discrimination and implications for studies of past and future climate[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(13): 5738-5743. doi: 10.1073/pnas.0910513107
|
[46] |
Arthur M A, Dean W E, Claypool G E. Anomalous 13C enrichment in modern marine organic carbon[J]. Nature, 1985, 315: 216-218. doi: 10.1038/315216a0
|
[47] |
Kohn M J. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(46): 19691-19695.
|
[48] |
Schubert B A, Jahren A H. Reconciliation of marine and terrestrial carbon isotope excursions based on changing atmospheric CO2 levels[J]. Nature Communications, 2013, 4: 1653.
|
[49] |
Farquhar G D, Ehleringer J R, Hubick K T, et al. Carbon isotope discrimination and photosynthesis[J]. Annual Review of Plant Physiology & Plant Molecular Biology, 1989, 40(1): 503-538.
|
[50] |
Grocke D R. The carbon isotope composition of ancient CO2 based on higher-plant organic matter[J]. Philosophical Transactions Mathematical Physical & Engineering Sciences, 2002, 360: 633-658.
|
[51] |
Dal Corso J, Schmidt A R, Seyfullah L J, et al. Evaluating the use of amber in palaeoatmospheric reconstructions: The carbon-isotope variability of modern and Cretaceous conifer resins[J]. Geochimica et Cosmochimica Acta, 2017, 199: 351-369.
|
[52] |
Jahren A H, Nan C A, Harbeson S A. Prediction of atmospheric δ13CO2 using fossil plant tissues[J]. Reviews of Geophysics, 2008, 46(1): 1-12.
|
[53] |
Preto N, Willems H, Guaiumi C, et al. Onset of significant pelagic carbonate accumulation after the Carnian Pluvial Event (CPE) in the western Tethys[J]. Facies, 2013, 59(4): 891.
|
[54] |
Gardin S, Krystyn L, Richoz S, et al. Where and when the earliest coccolithophores?[J]. Lethaia, 2012, 45(4): 507-523.
|
[55] |
Janz H, Vennemann T W. Isotopic composition (O, C, Sr, and Nd) and trace element ratios (Sr/Ca, Mg/Ca) of Miocene marine and brackish ostracods from North Alpine Foreland deposits (Germany and Austria) as indicators for palaeoclimate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 225(1/4): 216-247.
|
[56] |
Jin X, Shi Z, Baranyi V, et al. The Jenkyns Event (Early Toarcian OAE) in the Ordos Basin, North China[J]. Global and Planetary Change, 2020, 193: 103273.
|
[57] |
Dera G, Neige P, Dommergues J. High-resolution dynamics of Early Jurassic marine extinctions: The case of Pliensbachian-Toarcian ammonites(Cephalopoda)[J]. Journal of the Geologic Society of London, 2010, 167: 21-33.
|
[58] |
宋海军, 童金南, 熊炎林, 等. δ13Ccarb-深度梯度的剧增与二叠纪末生物大灭绝[J]. 中国科学: 地球科学, 2012, 42(8): 1182-1191. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201208005.htm
Song H J, Tong J N, Xiong Y L, et al. The large increase of δ13Ccarb-depth gradient and the end-Permian mass extinction[J]. Science China: Earth Science, 2012, 42(8): 1182-1191(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201208005.htm
|
[59] |
单厚香, 王永标, 何磊, 等. 湖北崇阳二叠纪-三叠纪之交生物灭绝和沉积微相演化[J]. 地质科技情报, 2012, 31(1): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201201005.htm
Shan H X, Wang Y B, He L, et al. Mass extinction and evolution of sedimentary microfacies across the Permian-Triassic boundary in Chongyang, Hubei Province[J]. Geological Science and Technology Information, 2012, 31(1): 16-21(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201201005.htm
|
[60] |
Olsen P E, Kent D V, Sues H D, et al. Ascent of dinosaurs linked to an iridium anomaly at the Triassic-Jurassic boundary[J]. Science, 2002, 296: 1305-1307.
|
[61] |
Shen S Z, Crowley J L, Wang Y, et al. Calibrating the end-Permian mass extinction[J]. Science, 2011, 334: 1367-1372.
|
[62] |
Ruhl M, Kürschner W M. Multiple phases of carbon cycle disturbance from large igneous province formation at the Triassic-Jurassic transition[J]. Geology, 2011, 39(5): 431-434.
|