Volume 42 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Ge Yu, Shi Zhiqiang. Sinemurian-Pliensbachian boundary event (Early Jurassic): Current status and future challenges[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 218-225. doi: 10.19509/j.cnki.dzkq.2022.0071
Citation: Ge Yu, Shi Zhiqiang. Sinemurian-Pliensbachian boundary event (Early Jurassic): Current status and future challenges[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 218-225. doi: 10.19509/j.cnki.dzkq.2022.0071

Sinemurian-Pliensbachian boundary event (Early Jurassic): Current status and future challenges

doi: 10.19509/j.cnki.dzkq.2022.0071
  • Received Date: 16 Jul 2021
  • The Lower Jurassic is composed of the Hettangian, Sinemurian, Pliensbachian and Toarcian, among which the Toarcian oceanic anoxic events (T-OAE) have been widely studied. Depositions of black shales and negative excursions of both δ13Corg and δ13Ccarb at the Sinemuiran-Primbalian boundary, which has been recorded in the United Kingdom, France, Italy, Portugal and China.This event, known as the "S-P boundary event" (SPBE), characterized by significant carbon isotope, environmental and climatic perturbations in global scale. It is considered to be similar to the T-OAE, a well-known oceanic anoxic event, during which light carbon was released into the atmospheric system, although it is still unknown the sources of the carbon inputs. Research has so far dominantly focused on the marine strata in Europe, while few studies have evaluated the Lower Jurassic terrestrial strata. The Lower Jurassic lacustrine deposits are well developed in the Sichuan Basin, China. Similar to the T-OAE in the Daanzhai Member of Ziliujing Formation, the negative excursion of δ13Corg was recorded in the blackshales and shelly limestones of the Dongyuemiao Member, Ziliujing Formation, indicating that the SPBE likewise has an impact on the Early Jurassic ancient lake in the Sichuan Basin.

     

  • loading
  • [1]
    Schlanger S O, Jenkyns H C. Cretaceous oceanic anoxic events: Causes and consequences[J]. Geologie En Mijnbouw, 1976, 55(3): 179-184.
    [2]
    Jenkyns H C. Geochemistry of oceanic anoxic events[J]. Geochem. Geophys. Geosyst., 2010, 11(3): 1-30.
    [3]
    Mchone G J. Broad-terrane Jurassic flood basalts across northeastern North America[J]. Geology, 1996, 24(4): 319-322. doi: 10.1130/0091-7613(1996)024<0319:BTJFBA>2.3.CO;2
    [4]
    Marzoli A, Renne P, Piccirllo E M, et al. Extensive 200-million-year-old continental flood basalts of the Central Atlantic magmatic province[J]. Science, 1999, 284: 616-618. doi: 10.1126/science.284.5414.616
    [5]
    Schöllhorn I, Adatte T, van de Schootbrugge B, et al. Climate and environmental response to the break-up of Pangea during the Early Jurassic (Hettangian-Pliensbachian): The Dorset coast (UK) revisited[J]. Global and Planetary Change, 2020, 185: 1-22.
    [6]
    谭丽娟, 师萌, 葛毓柱, 等. 三叠系-侏罗系环境变化及界线研究方法综述[J]. 地球科学与环境学报, 2018, 40(3): 285-300. doi: 10.3969/j.issn.1672-6561.2018.03.006

    Tan L J, Shi M, Ge Y Z, et al. Revive on Triassic-Jurassic environment changes and boundary research methods[J]. Journal of Earth Sciences and Environment, 2018, 40(3): 285-300(in Chinese with English abstract). doi: 10.3969/j.issn.1672-6561.2018.03.006
    [7]
    Jenkyns H C. The Early Toarcian and Cenomanian-Turonian anoxic events in Europe: Comparisons and contrasts[J]. Geologische Rundschau, 1985, 74(3): 505-518. doi: 10.1007/BF01821208
    [8]
    Jenkyns H C. The Early Toarcian (Jurassic) anoxic event: Stratigraphic, sedimentary, and geochemical evidence[J]. American Journal of Science, 1988, 288(2): 101-151. doi: 10.2475/ajs.288.2.101
    [9]
    Jourdan F, Féraud G, Bertrand H, et al. The 40Ar/39Ar ages of the sill complex of the Karoo large igneous province: Implications for the Pliensbachian-Toarcian climate change[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(6): 1-20.
    [10]
    Korte C, Hesselbo S P. Shallow marine carbon and oxygen isotope and elemental records indicate icehouse-greenhouse cycles during the Early Jurassic[J]. Paleoceanography, 2011, 26(4): 1-18.
    [11]
    Lu J, Zhou K, Yang M, et al. Terrestrial organic carbon isotopic composition (δ13Corg) and environmental perturbations linked to Early Jurassic volcanism: Evidence from the Qinghai-Tibet Plateau of China[J]. Global and Planetary Change, 2020, 195: 103331. doi: 10.1016/j.gloplacha.2020.103331
    [12]
    杨競红, 蒋少涌, 凌洪飞, 等. 黑色页岩与大洋缺氧事件的Re-Os同位素示踪与定年研究[J]. 地学前缘, 2005, 12(2): 143-150. doi: 10.3321/j.issn:1005-2321.2005.02.016

    Yang J H, Jiang S Y, Ling H F, et al. Re-Os isotope tracing and dating of black shales and oceanic anoxic events[J]. Earth Science Frontiers, 2005, 12(2): 143-150(in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2005.02.016
    [13]
    于宁, 彭伟, 陈友智, 等. 黔东北梵净山地区沥青Re-Os同位素年龄对油气成藏年代的约束[J]. 地质科技通报, 2021, 40(5): 64-70. doi: 10.19509/j.cnki.dzkq.2021.0505

    Yu N, Peng W, Chen Y Z, et al. Constraint of the isotopic age of asphalt Re-Os on the age of hydrocarbon accumulation in Fanjingshan area in Northeast Guizhou[J]. Bulletion of Geological and Technology, 2021, 40(5): 64-70(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0505
    [14]
    Xu W, Ruhl M, Jenkyns H C, et al. Carbon sequestration in an expanded lake system during the Toarcian oceanic anoxic event[J]. Nature Geoscience, 2017, 10(2): 129. doi: 10.1038/ngeo2871
    [15]
    Price G D, Baker S J, Van DeVelde J H, et al. High-resolution carbon cycle and seawater temperature evolution during the Early Jurassic (Sinemurian-Early Pliensbachian)[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(10): 3917-3928. doi: 10.1002/2016GC006541
    [16]
    Peti L, Thibault N, Clémence M E, et al. Sinemurian-Pliensbachian calcareous nannofossil biostratigraphy and organic carbon isotope stratigraphy in the Paris Basin: Calibration to the ammonite biozonation of NW Europe[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 468: 142-161. doi: 10.1016/j.palaeo.2016.12.004
    [17]
    Ruhl M, Hesselbo S P, Hinnov L, et al. Astronomical constraints on the duration of the Early Jurassic Pliensbachian Stage and global climatic fluctuations[J]. Earth & Planetary Science Letters, 2016, 455: 149-165. doi: 10.3969/j.issn.1000-3274.2016.02.015
    [18]
    Jenkyns H C, Jones C E, Grcke D R, et al. Chemostratigraphy of the Jurassic System: Applications, limitations and implications for palaeoceanography[J]. Journal of the Geological Society, 2002, 159(4): 351-378. doi: 10.1144/0016-764901-130
    [19]
    Masetti D, Claps M, Giacometti A, et al. The Calcari Frigi Formation of the Trento Platform (Early and Middle Lias, Venetian Prealps)[J]. AttiTicinensi di Scienzedella Terra, 1998, 40(1): 139-183.
    [20]
    Picotti V, Cobianchi M. Jurassic periplatform sequences of the eastern Lombardian Basin (Southern Alps): The deep-sea record of the tectonic evolution, growth and demise history of a carbonate platform[J]. Earth Planets & Space, 1996, 48(1): 171-219.
    [21]
    Franceschi M, Dal Corso J, Posenato R, et al. Early Pliensbachian (Early Jurassic) C-isotope perturbation and the diffusion of the Lithiotis Fauna: Insights from the western Tethys[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 410(1): 255-263.
    [22]
    Storm M S, Hesselbo S P, Jenkyns H C, et al. Orbital pacing and secular evolution of the Early Jurassic carbon cycle[J]. Proceedings of the National Academy of Sciences, 2020, 117(8): 1-9.
    [23]
    Franceschi M, Jing X, Shi Z Q, et al. High-resolution record of multiple organic-carbon-isotope excursions in lacustrine deposits of Upper Sinemurian through Pliensbachian (Early Jurassic) from the Sichuan Basin, China[J/OL]. Geological Society of America Bulletin, 2022: 1-15.
    [24]
    Ziegler P A. Geological atlas of western and central Europe[M]. London: Shell Internationale Petroleum Maatschappij, 1990.
    [25]
    Bjerrum C J, Surlyk F, Callomon J H, et al. Numerical paleoceanographic study of the Early Jurassic Transcontinental Laurasian Seaway[J]. Paleoceanography, 2001, 16(4): 390-404. doi: 10.1029/2000PA000512
    [26]
    Percival L, Cohen A S, Davies M K, et al. Osmium isotope evidence for two pulses of increased continental weathering linked to Early Jurassic volcanism and climate change[J]. Geology, 2016, 44(9): 759-762. doi: 10.1130/G37997.1
    [27]
    Copestake P, Johnson B. Lower Jurassic Foraminifera from the Llanbedr (Mochras Farm) Borehole[J]. North Wales, UK. Monogr. Palaeontogr., 2014, 167(1): 1-403.
    [28]
    Woodland A W. The Llanbedr (Mochras Farm) Borehole[M]. [S. l. ]: Institute of Geological Sciences, 1971.
    [29]
    Franceschi M, Dal Corso J, Cobianchi M, et al. Tethyan carbonate platform transformations during the Early Jurassic (Sinemurian-Pliensbachian, Southern Alps): Comparison with the Late Triassic Carnian Pluvial Episode[J]. Geological Society of America Bulletin, 2019, 131(7/8): 1255-1275.
    [30]
    Gomez J J, Comas-Rengifo M J, Goy A. Palaeoclimatic oscillations in the Pliensbachian (Lower Jurassic) of the Asturian Basin (Northern Spain)[J]. Climate of the Past, 2016;12(5): 1199-1214. doi: 10.5194/cp-12-1199-2016
    [31]
    Duarte L V, Comas-Rengifo M J, Silva R L, et al. Carbon isotope stratigraphy and ammonite biochronostratigraphy across the Sinemurian-Pliensbachian boundary in the western Iberian margin[J]. Bulletin of Geosciences, 2014, 89(4): 719-736.
    [32]
    Lu Y Z, Deng S H. Palaeoclimate around the Triassic-Jurassic boundary in southern margin of Junggar Basin[J]. Journal of Palaeogeography, 2009, 11(6): 652-660.
    [33]
    李英强, 何登发. 四川盆地及邻区早侏罗世构造-沉积环境与原型盆地演化[J]. 石油学报, 2014, 35(2): 219-232. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201402002.htm

    Li Y Q, He D F. Evolution of tectonic-depositional environment and prototype basins of the Early Jurassic in Sichuan Basin and adjacent areas[J]. Acta Petrolei Sinica, 2014, 35(2): 219-232(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201402002.htm
    [34]
    文芠, 赵兵. 四川蒲江-雅安地区自流井组地层特征及沉积相[J]. 地层学杂志, 2010, 34(2): 219-224. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201002017.htm

    Weng W, Zhao B. Stratigraphic characteristics and sedimentary facies of Ziliujing Formation in Pujiang-Ya'an area, Sichuan[J]. Journal of Stratigraphy, 2010, 34(2): 219-224(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201002017.htm
    [35]
    Weissert H, Lini A, Fllmi K B, et al. Correlation of Early Cretaceous carbon isotope stratigraphy and platform drowning events: A possible link?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1998, 137(3): 189-203.
    [36]
    Woodfine R G, Jenkyns H C, Sarti M, et al. The response of two Tethyan carbonate platforms to the Early Toarcian (Jurassic) oceanic anoxic event: Environmental change and differential subsidence[J]. Sedimentology, 2008, 55(4): 1011-1028. doi: 10.1111/j.1365-3091.2007.00934.x
    [37]
    Dal Corso J, Mietto P, Newton R J, et al. Discovery of a major negative δ13C spike in the Carnian (Late Triassic) linked to the eruption of Wrangellia flood basalts[J]. Geology, 2012, 40(1): 79-82. doi: 10.1130/G32473.1
    [38]
    Dal Corso J, Gianolla P, Rigo M, et al. Multiple negative carbon-isotope excursions during the Carnian Pluvial Episode (Late Triassic)[J]. Earth-Science Reviews, 2018, 185: 732-750. doi: 10.1016/j.earscirev.2018.07.004
    [39]
    Sun Y D, Wignall P B, Joachimski M M, et al. Climate warming, euxinia and carbon isotope perturbations during the Carnian (Triassic) crisis in South China[J]. Earth and Planetary Science Letters, 2016, 444(1): 88-100.
    [40]
    Dal Corso J, Gianolla P, Newton R J, et al. Carbon isotope records reveal synchronicity between carbon cycle perturbation and the "Carnian Pluvial Event" in the Tethys realm (Late Triassic)[J]. Global & Planetary Change, 2015, 127: 79-90.
    [41]
    Mueller S, Hounslow M W, Kürschner W M. Integrated stratigraphy and palaeoclimate history of the Carnian Pluvial Event in the Boreal realm: New data from the%Upper Triassic Kapp Toscana Group in central Spitsbergen (Norway)[J]. Journal of the Geological Society, 2016, 173(1): 186-202. doi: 10.1144/jgs2015-028
    [42]
    Mueller S, Krystyn L, Kurschner W M. Climate variability during the Carnian Pluvial Phase: A quantitative palynological study of the Carnian sedimentary succession at Lunz am See, Northern Calcareous Alps, Austria[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 441(1): 198-211.
    [43]
    Masetti D, Figus B, Jenkyns H C, et al. Carbon-isotope anomalies and demise of carbonate platforms in the Sinemurian (Early Jurassic) of the Tethyan region: Evidence from the southern Alps (Northern Italy)[J]. Geological Magazine, 2016, 154: 1-26.
    [44]
    Riding J B, Leng M J, Kender S, et al. Isotopic and palynological evidence for a new Early Jurassic environmental perturbation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 374(1): 16-27.
    [45]
    Diefendorf A F, Mueller K E, Wing S L, et al. Global patterns in leaf 13C discrimination and implications for studies of past and future climate[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(13): 5738-5743. doi: 10.1073/pnas.0910513107
    [46]
    Arthur M A, Dean W E, Claypool G E. Anomalous 13C enrichment in modern marine organic carbon[J]. Nature, 1985, 315: 216-218. doi: 10.1038/315216a0
    [47]
    Kohn M J. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(46): 19691-19695.
    [48]
    Schubert B A, Jahren A H. Reconciliation of marine and terrestrial carbon isotope excursions based on changing atmospheric CO2 levels[J]. Nature Communications, 2013, 4: 1653.
    [49]
    Farquhar G D, Ehleringer J R, Hubick K T, et al. Carbon isotope discrimination and photosynthesis[J]. Annual Review of Plant Physiology & Plant Molecular Biology, 1989, 40(1): 503-538.
    [50]
    Grocke D R. The carbon isotope composition of ancient CO2 based on higher-plant organic matter[J]. Philosophical Transactions Mathematical Physical & Engineering Sciences, 2002, 360: 633-658.
    [51]
    Dal Corso J, Schmidt A R, Seyfullah L J, et al. Evaluating the use of amber in palaeoatmospheric reconstructions: The carbon-isotope variability of modern and Cretaceous conifer resins[J]. Geochimica et Cosmochimica Acta, 2017, 199: 351-369.
    [52]
    Jahren A H, Nan C A, Harbeson S A. Prediction of atmospheric δ13CO2 using fossil plant tissues[J]. Reviews of Geophysics, 2008, 46(1): 1-12.
    [53]
    Preto N, Willems H, Guaiumi C, et al. Onset of significant pelagic carbonate accumulation after the Carnian Pluvial Event (CPE) in the western Tethys[J]. Facies, 2013, 59(4): 891.
    [54]
    Gardin S, Krystyn L, Richoz S, et al. Where and when the earliest coccolithophores?[J]. Lethaia, 2012, 45(4): 507-523.
    [55]
    Janz H, Vennemann T W. Isotopic composition (O, C, Sr, and Nd) and trace element ratios (Sr/Ca, Mg/Ca) of Miocene marine and brackish ostracods from North Alpine Foreland deposits (Germany and Austria) as indicators for palaeoclimate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 225(1/4): 216-247.
    [56]
    Jin X, Shi Z, Baranyi V, et al. The Jenkyns Event (Early Toarcian OAE) in the Ordos Basin, North China[J]. Global and Planetary Change, 2020, 193: 103273.
    [57]
    Dera G, Neige P, Dommergues J. High-resolution dynamics of Early Jurassic marine extinctions: The case of Pliensbachian-Toarcian ammonites(Cephalopoda)[J]. Journal of the Geologic Society of London, 2010, 167: 21-33.
    [58]
    宋海军, 童金南, 熊炎林, 等. δ13Ccarb-深度梯度的剧增与二叠纪末生物大灭绝[J]. 中国科学: 地球科学, 2012, 42(8): 1182-1191. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201208005.htm

    Song H J, Tong J N, Xiong Y L, et al. The large increase of δ13Ccarb-depth gradient and the end-Permian mass extinction[J]. Science China: Earth Science, 2012, 42(8): 1182-1191(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201208005.htm
    [59]
    单厚香, 王永标, 何磊, 等. 湖北崇阳二叠纪-三叠纪之交生物灭绝和沉积微相演化[J]. 地质科技情报, 2012, 31(1): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201201005.htm

    Shan H X, Wang Y B, He L, et al. Mass extinction and evolution of sedimentary microfacies across the Permian-Triassic boundary in Chongyang, Hubei Province[J]. Geological Science and Technology Information, 2012, 31(1): 16-21(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201201005.htm
    [60]
    Olsen P E, Kent D V, Sues H D, et al. Ascent of dinosaurs linked to an iridium anomaly at the Triassic-Jurassic boundary[J]. Science, 2002, 296: 1305-1307.
    [61]
    Shen S Z, Crowley J L, Wang Y, et al. Calibrating the end-Permian mass extinction[J]. Science, 2011, 334: 1367-1372.
    [62]
    Ruhl M, Kürschner W M. Multiple phases of carbon cycle disturbance from large igneous province formation at the Triassic-Jurassic transition[J]. Geology, 2011, 39(5): 431-434.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(245) PDF Downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return