Volume 41 Issue 3
May  2022
Turn off MathJax
Article Contents
Xie Jingyu, Wang Dan, Li Ning, Wang Zhenyu, Fu Guoqiang, Jing Xianpeng, Ming Yuanyuan. Development status and suggestions of hot dry rock hydraulic fracturing for building geothermal reservoirs[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 321-329. doi: 10.19509/j.cnki.dzkq.2022.0082
Citation: Xie Jingyu, Wang Dan, Li Ning, Wang Zhenyu, Fu Guoqiang, Jing Xianpeng, Ming Yuanyuan. Development status and suggestions of hot dry rock hydraulic fracturing for building geothermal reservoirs[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 321-329. doi: 10.19509/j.cnki.dzkq.2022.0082

Development status and suggestions of hot dry rock hydraulic fracturing for building geothermal reservoirs

doi: 10.19509/j.cnki.dzkq.2022.0082
  • Received Date: 07 Aug 2021
  • Energy is a powerful guarantee for the long-term stable development of the economy and society. At the same time, China has also entered a critical period of ecological civilization construction. To achieve this goal, it is urgent to build a clean, low-carbon, efficient, and diversified modern energy system. As new environment-friendly energy, hot dry rock (HDR) is expected to promote the energy mix transition. The development of HDR requires the establishment of an enhanced geothermal system(EGS). It is to build an well circulation to extract thermal energy for power generation after drilling and hydraulic fracturing. Since the 1970s, many developed countries have tried to develop HDR successively. However, limited by key technologies, such as artificial heat storage construction and induced earthquake prevention, few EGS projects have been successfully operated. In recent years, as the advantages and the large-scale development feasibility of HDR are gradually recognized by the international society, the number of EGS is increasing generally. Hydraulic fracturing is one of the core technologies to build the geothermal reservoir, which directly determines the heat transfer volume and the heat transfer efficiency. Based on the analysis of typical EGS cases at home and abroad, the characteristics of HDR hydraulic fracturing are summarized. Moreover, combined with several popular theoretical models and the actual situation of the first EGS (Qiabuqia HDR) in China, the relationship between the HDR fracturing and the induced earthquake is briefly described. From the point of view of fracturing technology, intelligent development, and micro-seismic moment tensor inversion, the suggestions for further development of HDR fracturing are presented.


  • loading
  • [1]
    李德威, 王焰新. 干热岩地热能研究与开发的若干重大问题[J]. 地球科学: 中国地质大学学报, 2015, 40(11): 1858-1869. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201511008.htm

    Li D W, Wang Y X. Major issues of research and development of hot dry rock geothermal energy[J]. Earth Science: Journal of China University of Geosciences, 2015, 40(11): 1858-1869(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201511008.htm
    许天福, 胡子旭, 李胜涛, 等. 增强型地热系统: 国际研究进展与我国研究现状[J]. 地质学报, 2018, 92(9): 1936-1947. doi: 10.3969/j.issn.0001-5717.2018.09.012

    Xu T F, Hu Z X, Li S T, et al. Enhanced geothermal system: International progresses and research status of China[J]. Acta Geologica Sinica, 92(9): 1936-1947(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2018.09.012
    汪集旸, 胡圣标, 庞忠和, 等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 2012, 30(32): 25-31. doi: 10.3981/j.issn.1000-7857.2012.32.002

    Wang J Y, Hu S B, Pang Z H, et al. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J]. Science and Technology Review, 2012, 30(32): 25-31(in Chinese with English abstract). doi: 10.3981/j.issn.1000-7857.2012.32.002
    雷治红. 青海共和盆地干热岩储层特征及压裂试验模型研究[D]. 长春: 吉林大学, 2020.

    Lei Z H. Study on the characteristics of hot dry rock reservoir and fracturing test model in the Gonghe Basin, Qinghai Province[D]. Changchun: Jilin University, 2020(in Chinese with English abstract).
    Tester J W, Anderson B J, Batchelor A S, et al. The future of geothermal energy: Impact of enhanced geothermal systems[EGS]on the United States in the 21st century[R]. Boston, USA: Massachusetts Institute of Technology, 2006.
    自然资源部中国地质调查局, 国家能源局新能源和可再生能源司, 中国科学院科技战略咨询研究院, 等. 中国地热能发展报告(2018)[M]. 北京: 中国石化出版社, 2018.

    China Geological Survey of Ministry of Natural Resources, Department of New and Renewable Energy of National Energy Administration, Institutes of Science and Development of Chinese Academy of Sciences, et al. China geothermal energy development report: 2018[M]. Beijing: China Petrochemical Press, 2018(in Chinese).
    窦斌, 高辉, 周刚, 等. 我国发展增强型地热开采技术所面临的机遇与挑战[J]. 地质科技情报, 2014, 33(5): 208-210. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201405032.htm

    Dou B, Gao H, Zhou G, et al. Opportunities and challenges of developing enhance geothermal system technology in China[J]. Geological Science and Technology Information, 2014, 33(5): 208-210(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201405032.htm
    王贵玲, 马峰, 蔺文静, 等. 干热岩资源开发工程储层激发研究进展[J]. 科技导报, 2015, 33(11): 103-107. doi: 10.3981/j.issn.1000-7857.2015.11.018

    Wang G L, Ma F, Lin W J, et al. Reservoir stimulation in hot dry rock resource development[J]. Science and Technology Review, 2015, 33(11): 103-107(in Chinese with English abstract). doi: 10.3981/j.issn.1000-7857.2015.11.018
    陈作, 许国庆, 蒋漫旗. 国内外干热岩压裂技术现状及发展建议[J]. 石油钻探技术, 2019, 47(6): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201906002.htm

    Chen Z, Xu G Q, Jiang M Q. The current status and development recommendations for dry hot rock fracturing technologies at home and abroad[J]. Petroleum Drilling Techniques, 2019, 47(6): 1-8(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201906002.htm
    McClure M W, Horne R N. An investigation of stimulation mechanisms in Enhanced Geothermal Systems[J]. International Journal of Rock Mechanics & Mining Sciences, 2014, 72: 242-260.
    张森琦, 文冬光, 许天福, 等. 美国干热岩"地热能前沿瞭望台研究计划"与中美典型EGS场地勘查现状对比[J]. 地学前缘, 2019, 26(2): 321-334. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201902030.htm

    Zhang S Q, Wen D G, Xu T F, et al. The U.S. frontier observatory for research in geothermal energy project and comparison of typical EGS site exploration status in China and U. S[J]. Earth Science Frontiers, 2019, 26(2): 321-334(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201902030.htm
    Norbeck J H, McClure M W, Horne R H. Field observations at the Fenton Hill enhanced geothermal system test site support mixed-mechanism stimulation[J]. Geothermics, 2018, 74: 135-149. doi: 10.1016/j.geothermics.2018.03.003
    许天福, 袁益龙, 姜振蛟, 等. 干热岩资源和增强型地热工程: 国际经验和我国展望[J]. 吉林大学学报: 地球科学版, 2016, 46(4): 1139-1152. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201604012.htm

    Xu T F, Yuan Y L, Jiang Z J, et al. Hot dry rock and enhanced geothermal engineering: International experience and China prospect[J]. Journal of Jilin University: Earth Science Edition, 2016, 46(4): 1139-1152(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201604012.htm
    Brown D W, Duchane D V. Scientific progress on the Fenton Hill HDR project since 1983[J]. Geothermics, 1999, 28: 591-601. doi: 10.1016/S0375-6505(99)00030-9
    Kelkar S, WoldeGabriel G, Rehfeldt K. Lessons learned from the pioneering hot dry rock project at Fenton Hill, USA[J]. Geothermics, 2016, 63: 5-14. doi: 10.1016/j.geothermics.2015.08.008
    Baria R, Baumga Èrtner J, GeÂrard A, et al. European HDR research programme at Soultz-sous-Forêts(France) 1987-1996[J]. Geothermics, 1999, 28: 655-669. doi: 10.1016/S0375-6505(99)00036-X
    Cuenot N, Charle'ty J, Dorbath L, et al. Faulting mechanisms and stress regime at the European HDR site of Soultz-sous-Forêts, France[J]. Geothermics, 2006, 35: 561-575. doi: 10.1016/j.geothermics.2006.11.007
    Cuenot N, Dorbath C, Dorbath L. Analysis of the microseismicity induced by fluid injections at the EGS site of Soultz-sous-Forêts(Alsace, France): Implications for the characterization of the geothermal reservoir properties[J]. Pure and Applied Geophysics, 2008, 165: 797-828. doi: 10.1007/s00024-008-0335-7
    Genter A, Evans K, Cuenot N, et al. Contribution of the exploration of deep crystalline fractured reservoir of Soultz to the knowledge of enhanced geothermal systems(EGS)[J]. Comptes Rendus Geoscience, 2010, 342: 502-516. doi: 10.1016/j.crte.2010.01.006
    Charle'ty J, Cuenot N, Dorbath L, et al. Large earthquakes during hydraulic stimulations at the geothermal site of Soultz-sous-Forêts[J]. International Journal of Rock Mechanics & Mining Sciences, 2007, 44: 1091-1105.
    Didana Y L, Heinson G, Thiel S, et al. Magnetotelluric monitoring of permeability enhancement at enhanced geothermal system project[J]. Geothermics, 2017, 66: 23-38. doi: 10.1016/j.geothermics.2016.11.005
    Baisch S, Rothert E, Stang H, et al. Continued feothermal reservoir stimulation experiments in the Cooper Basin(Australia)[J]. Bulletin of the Seismological Society of America, 2015, 105(1): 198-209. doi: 10.1785/0120140208
    Humphreys B, Ward G. Habanero geothermal project field development plan[R]. Geodynamics Limited, 2014.
    Baisch S, Weidler R, Vörös R, et al. Induced seismicity during the stimulation of a geothermal HFR reservoir in the Cooper Basin, Australia[J]. Bulletin of the Seismological Society of America, 2006, 96(6): 2242-2256. doi: 10.1785/0120050255
    Kim H, Xie L M, Min K B, et al. Integrated in situ stress estimation by hydraulic fracturing, borehole observations and numerical analysis at the EXP-1 borehole in Pohang, Korea[J]. Rock Mechanics and Rock Engineering, 2017, 50: 3141-3155. doi: 10.1007/s00603-017-1284-1
    Grigoli F, Cesca S, Rinaldi A P, et al. The November 2017 Mw 5.5 Pohang earthquake: A possible case of induced seismicity in South Korea[J]. Science, 2018, 360: 1003-1006. doi: 10.1126/science.aat2010
    Kim K H, Ree J H, Kim Y H, et al. Assessing whether the 2017 Mw 5.4 Pohang earthquake in South Korea was an induced event[J]. Science, 2018, 360: 1007-1009. doi: 10.1126/science.aat6081
    Kim K, Min K B, Kim K Y, et al. Protocol for induced microseismicity in the first enhanced geothermal systems project in Pohang, Korea[J]. Renewable and Sustainable Energy Reviews, 2018, 91: 1182-1191. doi: 10.1016/j.rser.2018.04.062
    Kwiatek G, Saarno T, Ader T, et al. Controlling fluid-induced seismicity during a 6.1 km deep geothermal stimulation in Finland[J]. Science Advances, 2019, 5: eaav7224. doi: 10.1126/sciadv.aav7224
    BalamirO, Rivas E, Rickard W M, et al. Utah FORGE reservoir: Drilling results of deep characterization and monitoring well 58-32[C]//43rd Workshop on Geothermal Reservoir Engineering, Stanford, USA, 2018.
    Kraal K O, Ayling B F, Blake K, et al. Linkages between hydrothermal alteration, natural fractures, and permeability: Integration of borehole data for reservoir characterization at the Fallon FORGE EGS site, Nevada USA[J]. Geothermics, 2021, 89: 101946. doi: 10.1016/j.geothermics.2020.101946
    Moore J, McLennan J, Allis R, et al. The Utah frontier observatory for research in geothermal energy(FORGE): An international laboratory for enhanced geothermal system technology development[C]//44th Workshop on Geothermal Reservoir Engineering, California, USA, 2019.
    Nadimi S, Forbes B, Moore J, et al. Utah FORGE: Hydrogeothermal modeling of a granitic based discrete fracture network[J]. Geothermics, 2020, 87: 101853. doi: 10.1016/j.geothermics.2020.101853
    Lu J R, Ghassemi A. Estimating natural fracture orientations using geomechanics based stochastic analysis of microseismicity related to reservoir stimulation[J]. Geothermics, 2019, 79: 129-139. doi: 10.1016/j.geothermics.2019.01.003
    肖勇. 增强地热系统中干热岩水力剪切压裂THMC耦合研究[D]. 成都: 西南石油大学, 2017.

    Xiao Y. Study on THMC coupling of hydro-shearing in hot dry rock in enhanced geothermal system[D]. Chengdou: Southwest Petroleum University, 2017(in Chinese with English abstract).
    周长冰. 高温岩体水压致裂钻孔起裂与裂缝扩展机理及其应用[D]. 江苏徐州: 中国矿业大学, 2017.

    Zhou C B. Mechanism of hydraulic fracture borehole's fracture initiation and propagation for the high-temperature rock mass and its application[D]. Xuzhou Jiangsu: China University of Mining and Technology, 2017(in Chinese with English abstract).
    Xie J Y, Cheng W, Wang R J, et al. Experiments and analysis on the influence of perforation mode on hydraulic fracture geometry in shale formation[J]. Journal of Petroleum Science and Engineering, 2018, 168: 133-147. doi: 10.1016/j.petrol.2018.05.017
    Olasolo P, Juarez M C, Morales M P, et al. Enhanced geothermal systems(EGS): A review[J]. Renewable and Sustainable Energy Reviews, 2016, 56: 133-144. doi: 10.1016/j.rser.2015.11.031
    解经宇, 叶成明, 金显鹏, 等. 编织深部热能的"捕获网": 干热岩水力压裂[J]. 国土资源科普与文化, 2020, 23(2): 22-25. https://www.cnki.com.cn/Article/CJFDTOTAL-GTKW202002006.htm

    Xie J Y, Ye C M, Jin X P, et al. Weaving a "capture net" of deep thermal energy: Hydraulic fracturing of hot dry rock[J]. Scientific and Cultural Popularization of Land and Resources, 2020, 23(2): 22-25(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GTKW202002006.htm
    vanderElst N J, Page M T, Weiser D A, et al. Induced earthquake magnitudes are as large as(statistically) expected[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(6): 4575-4590. doi: 10.1002/2016JB012818
    Eyre T S, Eaton D W, Garagash D I, et al. The role of aseismic slip in hydraulic fracturing-induced seismicity[J]. Science advances, 2019, 5: eaav7172. doi: 10.1126/sciadv.aav7172
    解经宇, 陆洪智, 陈磊, 等. 龙马溪组层状页岩微观非均质性及力学各向异性特征[J]. 地质科技通报, 2021, 40(3): 67-77. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202103008.htm

    Xie J Y, Lu H Z, Chen L, et al. Microscopic heterogeneity and mechanical anisotropy of the laminated shale in Longmaxi Formation[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 67-77(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202103008.htm
    许天福, 张延军, 于子望, 等. 干热岩水力压裂实验室模拟研究[J]. 科技导报, 2015, 33(19): 35-39. doi: 10.3981/j.issn.1000-7857.2015.19.004

    Xu T F, Zhang Y J, Yu Z W, et al. Laboratory study of hydraulic fracturing on hot dry rock[J]. Science and Technology Review, 2015, 33(19): 35-39(in Chinese with English abstract). doi: 10.3981/j.issn.1000-7857.2015.19.004
    Atkinson G M, Eaton D W, Igonin N, et al. Developments in understanding seismicity triggered by hydraulic fracturing[J]. Nature Reviews Earth and Environment, 2020, 1: 264-277. doi: 10.1038/s43017-020-0049-7
    Bentz S, Kwiatek G, Martínez-Garzón P, et al. Seismic moment evolution during hydraulic stimulations[J]. Geophysical Research Letters, 2020, 47, e2019GL086185.
    McGarr A. Maximum magnitude earthquakes induced by fluid injection[J]. Journal of Geophysical Research: Solid Earth, 2014, 119: 1008-1019. doi: 10.1002/2013JB010597
    Galis M, Ampuero J P, Martin M P, et al. Induced seismicity provides insight into why earthquake ruptures stop[J]. Science Advances, 2017;3: eaap7528. doi: 10.1126/sciadv.aap7528
    郭亮亮. 增强型地热系统水力压裂和储层损伤演化的试验及模型研究[D]. 长春: 吉林大学, 2016.

    Guo L L. Test and model research of hydraulic fracturing and reservoir damage evolution in enhanced geothermal system[D]. Changchun: Jilin University, 2016(in Chinese with English abstract).
    Kumari W G P, Ranjith P G, Perera M S A. Experimental investigation of quenching effect on mechanical, micro-structural and flow characteristics of reservoir rocks: Thermal stimulation method for geothermal energy extraction[J]. Journal of Petroleum Science and Engineering, 2018, 162: 419-433. doi: 10.1016/j.petrol.2017.12.033
    Zhou C B, Wan Z J, Zhang Y, et al. Experimental study on hydraulic fracturing of granite under thermal shock[J]. Geothermics, 2018, 71: 146-155. doi: 10.1016/j.geothermics.2017.09.006
    陈桂, 刘洋. 基于人工智能的断层自动识别研究进展[J]. 地球物理学进展, 2021, 36(1): 119-131. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202101012.htm

    Chen G, Liu Y. Research progress of automatic fault recognition based on artificial intelligence[J]. Progress in Geophysics, 2021, 36(1): 119-131(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202101012.htm
    Li S D, Zhou Z M, Li X, et al. One CT imaging method of fracture intervention in rock hydraulic fracturing test[J]. Journal of Petroleum Science and Engineering, 2017, 156: 582-588. doi: 10.1016/j.petrol.2017.06.050
    刘建超. 压裂支撑剂智能化测量系统的研究[D]. 山东青岛: 中国石油大学(华东), 2017.

    Liu J C. Study on intelligent measurement system of fracturing proppant[D]. Shangdong Qingdao: China University of Petroleum, 2017(in Chinese with English abstract).
    薛卉, 舒彪, 陈科平, 等. CO2基增强型地热系统中流体-花岗岩相互作用研究进展及展望[J]. 地质科技通报, 2021, 40(3): 45-53. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202103005.htm

    Xue H, Shu B, Chen K P, et al. Research progress of fluid-granite interaction in CO2 based enhanced geothermal system[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 45-53(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202103005.htm
    吴顺川, 黄小庆, 陈钒, 等. 岩体破裂矩张量反演方法及其应用[J]. 岩土力学, 2016, 37(增刊1): 1-18. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S1001.htm

    Wu S C, Huang X Q, Chen F, et al. Moment tensor inversion of rock failure and its application[J]. Rock and Soil Mechanics, 2016, 37(S1): 1-18(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S1001.htm
    刘培洵, 陈顺云, 郭彦双, 等. 声发射矩张量反演[J]. 地球物理学报, 2014, 57(3): 858-866. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201403015.htm

    Liu P X, Chen S Y, Guo Y S, et al. Moment tensor inversion of acoustic emission[J]. Chinese Journal of Geophysics, 2014, 57(3): 858-866(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201403015.htm
    刘德民, 张昌生, 孙明行, 等. 干热岩勘查评价指标与形成条件[J]. 地质科技通报, 2021, 40(3): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202103001.htm

    Liu D M, Zhang C S, Sun M X, et al. Evaluation indexes and formation conditions of hot dry rock exploration[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 1-11(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202103001.htm
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(82) PDF Downloads(44) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint