Volume 41 Issue 3
May  2022
Turn off MathJax
Article Contents
Luo Weijun, Yang Kaiping, Wang Yanwei, Chen Jia, Jia Yuhe, Wang Shijie. Influence of different rock-soil fabrics on carbonate weathering carbon sink flux in karst regions[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 208-214. doi: 10.19509/j.cnki.dzkq.2022.0088
Citation: Luo Weijun, Yang Kaiping, Wang Yanwei, Chen Jia, Jia Yuhe, Wang Shijie. Influence of different rock-soil fabrics on carbonate weathering carbon sink flux in karst regions[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 208-214. doi: 10.19509/j.cnki.dzkq.2022.0088

Influence of different rock-soil fabrics on carbonate weathering carbon sink flux in karst regions

doi: 10.19509/j.cnki.dzkq.2022.0088
  • Received Date: 20 Jun 2021
  • The karst areas in southern China are characterized by a high rock exposure ratio and shallow and unevenly distributed soil layers.How this special geotechnical fabric affects the hydrological process is of great significance for the accurate estimation of carbonate weathering carbon sink flux.Hydrochemical runoff is a commonly used method for calculating carbonate weathering carbon sink flux at the watershed scale, and basin area and discharge, as two important parameters, are often difficult to accurately obtain in karst areas.To overcome this problem, we designed a rock-soil fabric simulation test site, including different rock-soil ratios(1:1 and 4:1) and soil thicknesses(5, 20, 100 cm) at the Puding Karst Ecosystem Research Station, Chinese Academy Sciences.The effects of rock exposure and soil layer thickness on hydrological processes and carbonate weathering carbon sink flux were quantitatively studied by monitoring the flow and hydrochemistry during a hydrological year.The results show that the average carbonate weathering carbon sink flux is 17±3 gC/m2/a, which is controlled by the leakage amount and accounts for 95% in the rainy season(from May to October); The influence of the rock exposure ratio(between the two groups of rock fabric) on the leakage amount is up to 14%, and the infiltration coefficient increases with increaseing of rock exposure ratio; The effect of the soil layer thickness on seepage is only 1%-2%.In addition, it is found that the correlation between the infiltration coefficient and carbonate weathering carbon sink flux is the most significant by analysis the observed data of 8 field basins from previous studies.The infiltration coefficient is the main factor affecting and controlling the carbonate weathering carbon sink flux, which is due to the geological background of different rock and soil fabrics in the karst area.At the same time, the influence may change with the rainfall variation, that is, the infiltration coefficient is not constant.

     

  • loading
  • [1]
    Amiotte S P, Probst J L. Modelling of atmospheric CO2 consumption by chemical weathering of rocks: Application to the Garonne, Congo and Amazon basins[J]. Chemical Geology, 1993, 107(3/4): 205-210.
    [2]
    Shen T M, Li W, Pan W Z, et al. Role of bacterial carbonic anhydrase during CO2 capture in the CO2-H2O-carbonate system[J]. Biochemical Engineering Journal, 2017, 123: 66-74. doi: 10.1016/j.bej.2017.04.003
    [3]
    Martin J B. Carbonate minerals in the global carbon cycle[J]. Chemical Geology, 2017, 449: 58-72. doi: 10.1016/j.chemgeo.2016.11.029
    [4]
    Liu Z H, Dreybrodt W, Liu H. Atmospheric CO2 sink: Silicate weathering or carbonate weathering?[J]. Applied Geochemistry, 2011, 26: S292-S294. doi: 10.1016/j.apgeochem.2011.03.085
    [5]
    Wang Z J, Yin J J, Pu J B, et al. Flux and influencing factors of CO2 outgassing in a karst spring-fed creek: Implications for carbonate weathering-related carbon sink assessment[J]. Journal of Hydrology, 2020, 596(2): 125710.
    [6]
    Liu Z H, Dreybrodt W, Wang H J. A new direction in effective accounting for the atmospheric CO2 budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J]. Earth Science Reviews, 2010, 99(3): 162-172.
    [7]
    Liu Z H, Macpherson G L, Groves C, et al. Large and active CO2 uptake by coupled carbonate weathering[J]. Earth-Science Reviews, 2018, 182: 42-49. doi: 10.1016/j.earscirev.2018.05.007
    [8]
    Goldscheider N, Chen Z, Auler A S, et al. Global distribution of carbonate rocks and karst water resources[J]. Hydrogeology Journal, 2020, 28(5): 1661-1677. doi: 10.1007/s10040-020-02139-5
    [9]
    袁道先. 碳循环与全球岩溶[J]. 第四纪研究, 1993, 13(1): 1-6. doi: 10.3321/j.issn:1001-7410.1993.01.001

    Yuan D X. Carbon cycle and global karst[J]. Quaternary Sciences, 1993, 13(1): 1-6(in Chinese with English abstract). doi: 10.3321/j.issn:1001-7410.1993.01.001
    [10]
    罗明明, 周宏, 郭绪磊, 等. 峡口隧道间歇性岩溶涌突水过程及来源解析[J]. 地质科技通报, 2021, 40(6): 246-254. doi: 10.19509/j.cnki.dzkq.2021.0054

    Luo M M, Zhou H, Guo X L, et al. Processes and sources identification of intermittent karst water inrush in Xiakou Tunnel[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 246-254(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0054
    [11]
    江欣悦, 李静, 郭林, 等. 豫北平原浅层地下水化学特征与成因机制[J]. 地质科技通报, 2021, 40(5): 290-300. doi: 10.19509/j.cnki.dzkq.2021.0511

    Jiang X Y, Li J, Guo L, et al. Chemical characteristics and formation mechanism of shallow groundwater in the northern Henan Plain[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 290-300(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0511
    [12]
    Zeng Q R, Liu Z H, Chen B, et al. Carbonate weathering-related carbon sink fluxes under different land uses: A case study from the Shawan Simulation Test Site, Puding, Southwest China[J]. Chemical Geology, 2017, 474: 58-71. doi: 10.1016/j.chemgeo.2017.10.023
    [13]
    Godsey S E, Kirchner J W, Clow D W. Concentration-discharge relationships reflect chemostatic characteristics of US catchments[J]. Hydrological Processes, 2009, 23(13): 1844-1864. doi: 10.1002/hyp.7315
    [14]
    Wang Q F, Zheng H, Zhu X J, et al. Primary estimation of Chinese terrestrial carbon sequestration during 2001-2010[J]. Science Bulletin, 2015, 60(6): 577-590. doi: 10.1007/s11434-015-0736-9
    [15]
    王世杰, 刘再华, 倪健, 等. 中国南方喀斯特地区碳循环研究进展[J]. 地球与环境, 2017, 45(1): 2-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201701002.htm

    Wang S J, Liu Z H, Ni J, et al. A review of research progress and future prospective of carbon cycle in karst area of South China[J]. Earth and Environment, 2017, 45(1): 2-9(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201701002.htm
    [16]
    Yan J H, Wang Y P, Zhou G Y, et al. Carbon uptake by karsts in the Houzhai Basin, southwest China[J]. Journal of Geophysical Research, 2011, 116(G4): 1-10.
    [17]
    何师意, 康志强, 李清艳, 等. 高分辨率实时监测技术在岩溶碳汇估算中的应用: 以板寨地下河监测站为例[J]. 气候变化研究进展, 2011, 7(3): 157-161. doi: 10.3969/j.issn.1673-1719.2011.03.001

    He S Y, Kang Z Q, Li Q Y, et al. The utilization of real-time high resolution mornitoring skill in karst carbon sequestration: A case of the station in Banzhai subterranean stream catchment[J]. Advances in Climate Change Research, 2011, 7(3): 157-161 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-1719.2011.03.001
    [18]
    曾成, 刘再华. 建设岩溶水-碳通量大型模拟试验场的构想[J]. 资源环境与工程, 2013, 27(2): 196-221. doi: 10.3969/j.issn.1671-1211.2013.02.018

    Zeng C, Liu Z H. Ideas of construction of simulation test field of karst water and carbon fluxes[J]. Resources Environment & Engineering, 2013, 27(2): 196-221(in Chinese with English abstract). doi: 10.3969/j.issn.1671-1211.2013.02.018
    [19]
    朱辉, 曾成, 刘再华, 等. 岩溶作用碳汇强度变化的土地利用调控规律: 贵州普定岩溶水-碳通量大型模拟试验场研究[J]. 水文地质工程地质, 2015, 42(6): 120-125. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201506020.htm

    Zhu H, Zeng C, Liu Z H, et al. Karst-related carbon sink flux variations caused by land use changes: An example from the Puding karst test site in Guizhou[J]. Hydrogeology & Engineering Geology, 2015, 42(6): 120-125(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201506020.htm
    [20]
    邱冬生, 庄大方, 胡云锋, 等. 中国岩石风化作用所致的碳汇能力估算[J]. 地球科学: 中国地质大学学报, 2004, 29(2): 177-182. doi: 10.3321/j.issn:1000-2383.2004.02.009

    Qiu D S, Zhuang D F, Hu Y F, et al. Estimation of carbon sink capacity caused by rock weathering in China[J]. Earth Science: Journal of China University of Geosciences, 2004, 29(2): 177-182(in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2004.02.009
    [21]
    彭韬, 周长生, 宁茂岐, 等. 基于探地雷达解译的喀斯特坡地表层岩溶带空间分布特征研究[J]. 第四纪研究, 2017, 37(6): 1262-1270.

    Peng T, Zhou C S, Ning M Q, et al. Study on spatial distribution of epikarst zone on plateau karst slope based on ground-penetrating radar[J]. Quaternary Sciences, 2017, 37(6): 1262-1270(in Chinese with English abstract).
    [22]
    梁杏, 张人权, 牛宏, 等. 地下水流系统理论与研究方法的发展[J]. 地质科技情报, 2012, 31(5): 143-151. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201205020.htm

    Liang X, Zhang R Q, Niu H, et al. Development of the theory and research method of groundwater flow system[J]. Geological Science and Technology Information, 2012, 31(5): 143-151(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201205020.htm
    [23]
    Zeng S B, Liu H, Liu Z H, et al. Seasonal and diurnal variations in DIC, NO3- and TOC concentrations in spring-pond ecosystems under different land-uses at the Shawan Karst Test Site, SW China: Carbon limitation of aquatic photosynthesis[J]. Journal of Hydrology, 2019, 574: 811-821. doi: 10.1016/j.jhydrol.2019.04.090
    [24]
    梁杏, 张婧玮, 蓝坤, 等. 江汉平原地下水化学特征及水流系统分析[J]. 地质科技通报, 2020, 39(1): 21-33. doi: 10.19509/j.cnki.dzkq.2020.0103

    Liang X, Zhang J W, Lan K, et al. Hydrochemical characteristics of ground water and analysis of groundwater flow systems in Jianghan Plain[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 21-33(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0103
    [25]
    郭芳, 姜光辉, 康志强. 亚热带典型岩溶水系统的碳汇效应对比研究[J]. 中国岩溶, 2011, 30(4): 403-409. doi: 10.3969/j.issn.1001-4810.2011.04.009

    Guo F, Jiang G H, Kang Z Q. Study on carbon sink effect in typical sub-tropical karst water system[J]. Carsologica Sinica, 2011, 30(4): 403-409(in Chinese with English abstract). doi: 10.3969/j.issn.1001-4810.2011.04.009
    [26]
    Zeng C, Liu Z H, Zhao M, et al. Hydrologically-driven variations in the karst-related carbon sink fluxes: Insights from high-resolution monitoring of three karst catchments in Southwest China[J]. Journal of Hydrology, 2016, 533: 74-90. doi: 10.1016/j.jhydrol.2015.11.049
    [27]
    Zeng S B, Liu Z H, Goldscheider N, et al. Comparisons on the effects of temperature, runoff, and land-cover on carbonate weathering in different karst catchments: Insights into the future global carbon cycle[J]. Hydrogeology Journal, 2020, 29: 331-345.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(395) PDF Downloads(70) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return