Volume 42 Issue 5
Sep.  2023
Turn off MathJax
Article Contents
Wang Qian, Xiao Guoqiao, Gao Hui, Qin Shiyu, Huang Xianyu. Discovery of the Lower Cretaceous aeolian sandstones in the Wulong Formation in Yichang, Hubei Province, and its provenance[J]. Bulletin of Geological Science and Technology, 2023, 42(5): 214-227. doi: 10.19509/j.cnki.dzkq.2022.0091
Citation: Wang Qian, Xiao Guoqiao, Gao Hui, Qin Shiyu, Huang Xianyu. Discovery of the Lower Cretaceous aeolian sandstones in the Wulong Formation in Yichang, Hubei Province, and its provenance[J]. Bulletin of Geological Science and Technology, 2023, 42(5): 214-227. doi: 10.19509/j.cnki.dzkq.2022.0091

Discovery of the Lower Cretaceous aeolian sandstones in the Wulong Formation in Yichang, Hubei Province, and its provenance

doi: 10.19509/j.cnki.dzkq.2022.0091
  • Received Date: 10 Nov 2021
  • Accepted Date: 13 Feb 2022
  • Rev Recd Date: 28 Jan 2022
  • Objective

    Eolian sandstones were widely developed in the middle latitudes of China during the Cretaceous era, which indicated the existence of subtropical desert belts. Studies on the age, distribution, provenance, and paleowind directions of Cretaceous aeolian sandstones would be helpful for the reconstruction of paleogeography and paleoclimate in East Asia during different periods of the Cretaceous era.

    Methods

    Here, we report the origin and provenance of a >40 m-thick sandstone layer within the Lower Cretaceous Wulong Formation (K1w) in Yichang, Hubei Province by systematically investigating its sedimentary facies in the field, particle size distribution, quartz grain surface textures, and detrital zircon U-Pb chronology.

    Results

    The results show that ① The Cretaceous sandstones were developed distal to an alluvial fan system that formed on the western margin of the Jianghan Basin. The thickness of the sandstones outcropped over 40 meters, with large scale high angle cross-bedding, and its grain size is extremely uniform. These sedimentary characteristics are in accordance with modern aeolian sandstones. ②Scanning election microscope images show that the quartz grains are generally well rounded, with disk-shaped and crescent-shaped impact scars and microfeatures caused by dissolution and precipitation on their surface, and these features are consistent with aeolian sands. ③ Four major age peaks were shown at~2.46 Ga, ~1.85 Ga, ~780 Ma and~170 Ma in the detrital zircon spectrum of the sandstones in the Wulong Formation. These peaks are consistent with the zircon ages of the Qinling-Dabie Orogen Belt and the sedimentary cover of the Huangling Dome, indicating that the sandstones may be mainly derived from the erosion of the Nanhua-Jurassic strata after the uplift of the Huangling Dome, as well as erosions from the Qinling-Dabie Orogen. ④ The youngest zircon grain in the sandstone was (119.9±2.8) Ma, indicating that the age of the Wulong Formation was not earlier than the late Early Cretaceous and was consistent with the conclusion from geological survey which considered the Lower Cretaceous Wulong Formation.

    Conclusion

    These results show that the sandstones were desert deposits that developed at the margin of diluvial fan of arid basin under the late Early Cretaceous arid climate, indicating that the Yichang area of Hubei Province was within the zonal deserts since the Early Cretaceous period under the influence of the subtropical high.

     

  • loading
  • [1]
    Pye K, Tsoar H. Aeolian sand and sand dunes[M]. London: Unwin Hyman, 1990.
    [2]
    Hasegawa H, Tada R, Jiang X, et al. Drastic shrinking of the Hadley circulation during the Mid-Cretaceous Supergreenhouse[J]. Climate of the Past, 2012, 8(4): 1323-1337. doi: 10.5194/cp-8-1323-2012
    [3]
    Chumakov N M, Zharkov M A, Herman A B, et al. Climatic belts of the Mid-Cretaceous time[J]. Stratigraphy and Geological Correlation, 1995, 3(3): 42-63.
    [4]
    Rodríguez López J P, Clemmensen L B, Lancaster N, et al. Archean to recent aeolian sand systems and their sedimentary record: Current understanding and future prospects[J]. Sedimentology, 2014, 61(6): 1487-1534. doi: 10.1111/sed.12123
    [5]
    董光荣, 王贵勇, 陈惠忠, 等. 中国沙漠形成、演化与青藏高原隆升的关系[C]//佚名. 青藏高原与全球变化研讨会论文集. 北京: 气象出版社, 1994: 24-38.

    Gong G R, Wang G Y, Chen H Z, et al. The formation and evolution of the deserts in China and their relation to the up lifting of Qinghai-Tibet Plateau[C]//Anon. Symposium on Qinghai-Tibet Plateau and global changes. Beijing: China Meteorological Press, 1994: 24-38(in Chinese with English abstract).
    [6]
    Chen R L, Zhu H F, Chen Y, et al. Recognition of aeolian sandstone of Lower Cretaceous in the Southwest Depression, Tarim Basin and its significance[J]. Chinese Science Bulletin, 1994, 39(9): 754-758.
    [7]
    罗旋, 杨申谷, 张亮, 等. 江陵凹陷白垩系红花套组沙漠沉积相分析[J]. 石油地质与工程, 2012, 26(1): 7-9. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN201201005.htm

    Luo X, Yang S G, Zhang L, et al. Desert sedimentary facies analysis of Honghuatao Formation of Cretaceous System in Jiangling Sag[J]. Petroleum Geology and Engineering, 2012, 26(1): 7-9(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN201201005.htm
    [8]
    Jiang X S, Pan Z X, Fu Q P. Regularity of palaeowind directions of the Early Cretaceous desert in Ordos Basin and climatic significance[J]. Science in China Series D: Earth Sciences, 2001, 44(1): 24-33. doi: 10.1007/BF02906882
    [9]
    Jiang X S, Pan Z X, Xu J S, et al. Late Cretaceous aeolian dunes and reconstruction of palaeo-wind belts of the Xinjiang Basin, Jiangxi Province, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 257(1/2): 58-66.
    [10]
    袁桃, 吴驰华, 伊海生, 等. 云南思茅盆地景谷地区下白垩统曼岗组风成砂岩沉积学特征及其古气候意义[J]. 地质学报, 2015, 89(11): 2062-2074. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201511018.htm

    Yuan T, Wu C H, Yi H S, et al. Sedimentology characteristics of eolian sandstones in the Lower Cretaceous Mangang Formation in the Jinggu area, Simao Basin, Yunnan and the paleoclimate significance[J]. Acta Geologica Sinica, 2015, 89(11): 2062-2074(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201511018.htm
    [11]
    汤海磊. 楚雄盆地东北部白垩纪风成沉积特征与古气候研究[D]. 成都: 成都理工大学, 2020.

    Tang H L. Sedimentary characteristics and palaeoclimatic implications of the Cretaceous aeolian erg system in the northeastern Chuxiong Basin, China[D]. Chengdu: Chengdu University of Technology, 2020(in Chinese with English abstract).
    [12]
    江新胜, 潘忠习, 傅清平. 四川盆地白垩纪沙漠风向变化规律及其意义[J]. 岩相古地理, 1999, 19(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-YXGD901.000.htm

    Jiang X S, Pan Z X, Fu Q P. The variations of palaeowind direction of the Cretaceous desert in the Sichuan Basin and their significance[J]. Sedimentary Facies and Palaeogeography, 1999, 19(1): 1-11(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YXGD901.000.htm
    [13]
    陈清华, 庞飞. 苏北盆地白垩纪沙漠石英颗粒表面特征及环境意义[J]. 特种油气藏, 2008, 15(5): 13-16. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ200805004.htm

    Chen Q H, Pang F. Surface characteristics and environment implication of quartz grains in Cretaceous desert of North Jiangsu Basin[J]. Special Oil and Gas Reservoir, 2008, 15(5): 13-16(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ200805004.htm
    [14]
    黄乐清, 黄建中, 罗来, 等. 湖南衡阳盆地东缘白垩系风成沉积的发现及其古环境意义[J]. 沉积学报, 2019, 37(4): 735-748. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201904007.htm

    Huang L Q, Huang J Z, Luo L, et al. The discovery of Cretaceous eolian deposits at the eastern margin of the Hengyang Basin, Hunan, and its paleoenvironmental significance[J]. Acta Sedimentologica Sinica, 2019, 37(4): 735-748(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201904007.htm
    [15]
    Jiang X S, Pan Z X, Fu Q P. Primary study on pattern of general circulation of atmosphere before uplift of the Tibetan Plateau in eastern Asia[J]. Science in China Series: Earth Sciences, 2001, 44(8): 680-688. doi: 10.1007/BF02907197
    [16]
    曹硕. 中国东部晚白垩世风成沉积: 盆山型沙漠体系[D]. 北京: 中国地质大学(北京), 2020.

    Cao S. Late Cretaceous aeolian deposits in eastern China: The intermountain erg system[D]. Beijing: China University of Geoscience(Beijing), 2020(in Chinese with English abstract).
    [17]
    Yu X C, Liu C L, Wang C L, et al. Late Cretaceous aeolian desert system within the Mesozoic fold belt of South China: Palaeoclimatic changes and tectonic forcing of East Asian erg development and preservation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 567: 110299. doi: 10.1016/j.palaeo.2021.110299
    [18]
    Yu X C, Liu C L, Wang C L, et al. Eolian deposits of the northern margin of the South China (Jianghan Basin): Reconstruction of the Late Cretaceous East Asian landscape in Central China[J]. Marine and Petroleum Geology, 2020, 117: 104390. doi: 10.1016/j.marpetgeo.2020.104390
    [19]
    Shen C B, Donelick R A, O'Sullivan P B, et al. Provenance and hinterland exhumation from LA-ICP-MS zircon U-Pb and fission-track double dating of Cretaceous sediments in the Jianghan Basin, Yangtze Block, Central China[J]. Sedimentary Geology, 2012, 281: 194-207. doi: 10.1016/j.sedgeo.2012.09.009
    [20]
    Li Y, He D, Li D, et al. Detrital zircon U-Pb geochronology and provenance of Lower Cretaceous sediments: Constraints for the northwestern Sichuan pro-foreland basin[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 453: 52-72. doi: 10.1016/j.palaeo.2016.03.030
    [21]
    杨振强. 湖北当阳白垩纪风成石英砂[J]. 地质科学, 1983, 15(3): 303-305. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX198303013.htm

    Yang Z Q. Observation on Cretaceous eolian quartz sands from Dangyang County, Hubei Province[J]. Scientia Geologica Sinica, 1983, 15(3): 303-305(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX198303013.htm
    [22]
    李群, 郭建华, 曾芳, 等. 江汉盆地白垩系沉积相与沉积演化[J]. 西南石油学院学报, 2006, 28(6): 5-8. doi: 10.3863/j.issn.1674-5086.2006.06.002

    Li Q, Guo J H, Zeng F, et al. Cretaceous sedimentary facies and the evolution in Jianghan Basin[J]. Journal of Southwest Petroleum Institute, 2006, 28(6): 5-8(in Chinese with English abstract). doi: 10.3863/j.issn.1674-5086.2006.06.002
    [23]
    朱锐, 张昌民, 龚福华, 等. 粒度资料的沉积动力学在沉积环境分析中的应用: 以江汉盆地西北缘上白垩统红花套组沉积为例[J]. 高校地质学报, 2010, 16(3): 358-364. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201003010.htm

    Zhu R, Zhang C M, Gong F H, et al. Use of sediment dynamic analysis in environment interpretation: A case study on Honghuatao Formation, Upper Cretaceous of western Jianghan Basin, Hubei Province[J]. Geological Journal of China Universities, 2010, 16(3): 358-364(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201003010.htm
    [24]
    Boucot A J, Xu C, Scotese C R. Phanerozoic paleoclimate: An atlas of lithologic indicators of climate[M]. Tulsa: Society of Economic Paleontologists and Mineralogists, 2013.
    [25]
    Scotese C R, Golonka J. Atlas of earth history[M]. Arlington: Department of Geology, University of Texas at Arlington. PALEOMAP Project, 2001.
    [26]
    Wilson I G. Ergs[J]. Sedimentary Geology, 1973, 10(2): 77-106. doi: 10.1016/0037-0738(73)90001-8
    [27]
    湖北省地质调查院. 建始县-宜昌市幅地质图(1: 25万)及说明书[Z]. 武汉: 湖北省地质调查院, 2005.

    Hubei Geological Survey Institute. 1: 250 000 Jianshi County-Yichang range geological map and manual[Z]. Wuhan: Hubei Geological Survey Institute, 2005(in Chinese).
    [28]
    焦方正, 冯建辉, 易积正, 等. 中扬子地区海相天然气勘探方向、关键问题与勘探对策[J]. 中国石油勘探, 2015, 20(2): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201502001.htm

    Jiao F Z, Feng J H, Yi J Z, et al. Direction, key factors and solution of marine natural gas exploration in Yangtze area[J]. China Petroleum Exploration, 2015, 20(2): 1-8(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201502001.htm
    [29]
    高键, 李英强, 何生, 等. 鄂西宜昌地区页岩气勘探发现对MVT铅锌矿成矿的指示意义[J]. 地球科学, 2021, 46(6): 2230-2245. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202106020.htm

    Gao J, Li Y Q, He S, et al. Exploration discovery of shale gas and its indicative significance to mineralization of MVT lead-zinc deposit in Yichang area, West Hubei[J]. Earth Science, 2021, 46(6): 2230-2245(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202106020.htm
    [30]
    李海, 白云山, 王保忠, 等. 湘鄂西地区下古生界页岩气保存条件[J]. 油气地质与采收率, 2014, 21(6): 22-25. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201406005.htm

    Li H, Bai Y S, Wang B Z, et al. Preservation conditions research on shale gas in the Lower Paleozoic of western Hunan and Hubei area[J]. Petroleum Geology and Recovery Efficiency, 2014, 21(6): 22-25(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201406005.htm
    [31]
    沈传波, 梅廉夫, 刘昭茜, 等. 黄陵隆起中-新生代隆升作用的裂变径迹证据[J]. 矿物岩石, 2009, 29(2): 54-60. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200902010.htm

    Shen C B, Mei L F, Liu Z Q, et al. Apatite and zircon fission track data evidences for the Mesozoic-Cenozoic uplift of Huangling Dome, Central China[J]. Journal of Mineral and Petrology, 2009, 29(2): 54-60(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200902010.htm
    [32]
    徐大良, 彭练红, 刘浩, 等. 黄陵背斜中新生代多期次隆升的构造-沉积响应[J]. 华南地质与矿产, 2013, 29(2): 90-99. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC201302002.htm

    Xu D L, Peng L H, Liu H, et al. Meso-Cenozoic tectono-sedimentary response of multi-phased uplifts of Huangling Anticline, Central China[J]. Geology and Mineral Resources of South China, 2013, 29(2): 90-99(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC201302002.htm
    [33]
    罗胜元, 陈孝红, 岳勇, 等. 中扬子宜昌地区沉积-构造演化与寒武系页岩气富集规律[J]. 天然气地球科学, 2020, 31(8): 1052-1068. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202008002.htm

    Luo S Y, Chen X H, Yue Y, et al. Analysis of sedimentary-tectonic evolution characteristics and shale gas enrichment in Yichang area, Middle Yangtze[J]. Natural Gas Geoscience, 2020, 31(8): 1052-1068(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202008002.htm
    [34]
    程龙, 李志宏, 阎春波, 等. 江汉盆地西缘宜昌地区下白垩统五龙组辫状河沉积特征[J]. 地层学杂志, 2018, 42(1): 90-99. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201801011.htm

    Cheng L, Li Z H, Yan C B, et al. Braided river deposits of the Lower Cretaceous Wulong Formation in the Yichang area of western Jianghan Basin[J]. Journal of Stratigraphy, 2018, 42(1): 90-99(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201801011.htm
    [35]
    李杰, 黄宏业, 刘子杰, 等. 向阳坪铀矿床沥青铀矿微区原位LA-ICP-MS U-Pb年龄及稀土元素特征[J]. 地质科技通报, 2021, 40(1): 90-99. doi: 10.19509/j.cnki.dzkq.2021.0011

    Li J, Huang H Y, Liu Z J, et al. In-situ U-Pb dating of pitchblende and the REE characteristics using LA-ICP-MS in Xiangyangping uranium deposit[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 90-99(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0011
    [36]
    Liu Y, Gao S, Hu Z, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010, 51(1/2): 537-571.
    [37]
    Vermeesch P. On the visualisation of detrital age distributions[J]. Chemical Geology, 2012, 312: 190-194.
    [38]
    Yu X, Liu C, Wang C, et al. Provenance of rift sediments in a composite basin-mountain system: Constraints from petrography, whole-rock geochemistry, and detrital zircon U-Pb geochronology of the Paleocene Shashi Formation, southwestern Jianghan Basin, Central China[J]. International Journal of Earth Sciences, 2018, 107(8): 2741-2766.
    [39]
    Wang X L, Zhou J C, Griffin W L, et al. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan Orogen: Dating the assembly of the Yangtze and Cathaysia Blocks[J]. Precambrian Research, 2007, 159(1/2): 117-131.
    [40]
    成都地质学院陕北队. 沉积岩(物)粒度分析及其应用[M]. 北京: 地质出版社, 1976.

    The Team of north of Shaaxi of Chengdu College of Geology. Application analysis of grain size[M]. Beijing: Geological Publishing House, 1976(in Chinese).
    [41]
    胡刚, 王乃昂, 高顺尉, 等. 花海湖泊全新世古风成砂的发现及其古环境解释[J]. 中国沙漠, 2002, 22(2): 63-69. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS200202012.htm

    Hu G, Wang N A, Gao S W, et al. Discovery of Holoceneaeolian sand in Huahai Lake and its environmental significance[J]. Journal of Desert Research, 2002, 22(2): 63-69(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS200202012.htm
    [42]
    刘立安, 姜在兴. 四川盆地古近纪沙漠沉积特征及古风向意义[J]. 地质科技情报, 2011, 30(2): 63-68. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201102012.htm

    Liu L A, Jiang Z X. Depositional features of the desert in the Paleogene Sichuan Basin and the significance for the reconstruction of palaeowind direction[J]. Geological Science and Technology Information, 2011, 30(2): 63-68(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201102012.htm
    [43]
    Wu Y B, Zheng Y F. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin, 2004, 49(15): 1554-1569.
    [44]
    李超. 江汉盆地东部中生代沉积物碎屑云母组成、锆石LA-ICPMS定年及其物源示踪[D]. 广州: 中国科学院研究生院(广州地球化学研究所), 2005.

    Li C. The chemical composition of clastic white micas and the LA-ICPMS U-Pb dating of zircon for the Mesozoic sediments in the eastern Jianghan Basin, China, and its significance for their source[D]. Guangzhou: Graduate School of The Chinese Academy of Sciences (Guangzhou Institute of Geochemistry), 2005(in Chinese with English abstract).
    [45]
    Shen C B, Mei L F, Peng L, et al. LA-ICPMS U-Pb zircon age constraints on the provenance of Cretaceous sediments in the Yichang area of the Jianghan Basin, Central China[J]. Cretaceous Research, 2012, 34: 172-183.
    [46]
    江新胜, 李玉文. 中国中东部白垩纪沙漠的时空分布及其气候意义[J]. 岩相古地理, 1996, 16(2): 42-51. https://www.cnki.com.cn/Article/CJFDTOTAL-YXGD602.003.htm

    Jiang X S, Li Y W. Spato-temporal distribution of the Cretaceous desert in central and eastern China and its climatic significance[J]. Sedimentary Facies and Palaeogeography, 1996, 16(2): 42-51(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YXGD602.003.htm
    [47]
    江新胜. 中国白垩纪沙漠及其古气候[D]. 成都: 成都理工大学, 2003.

    Jiang X S. Cretaceous desert in China and its paleoclimate[D]. Chengdu: Chengdu University of Technology, 2003 (in Chinese with English abstract).
    [48]
    潘忠习, 江新胜, 傅清平. 四川盆地白垩纪沙漠沉积磁组构特征及其古风向意义[J]. 岩相古地理, 1999, 19(1): 12-19. https://www.cnki.com.cn/Article/CJFDTOTAL-YXGD901.001.htm

    Pan Z X, Jiang X S, Fu Q P. The magnetic fabrics and palaeowind direction significance of the Cretaceous desert sediments in the Sichuan Basin[J]. Sedimentary Facies and Palaeogeography, 1999, 19(1): 12-19(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YXGD901.001.htm
    [49]
    Wu C, Liu C, Yi H, et al. Mid-Cretaceous desert system in the Simao Basin, southwestern China, and its implications for sea-level change during a greenhouse climate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 468: 529-544.
    [50]
    Li G, Wu C, Rodríguez-López J P, et al. Mid-Cretaceous aeolian desert systems in the Yunlong area of the Lanping Basin, China: Implications for palaeoatmosphere dynamics and paleoclimatic change in East Asia[J]. Sedimentary Geology, 2018, 364: 121-140.
    [51]
    Hasegawa H, Imsamut S, Charusiri P, et al. 'Thailand was a desert' during the Mid-Cretaceous: Equatorward shift of the subtropical high-pressure belt indicated by eolian deposits (Phu Thok Formation) in the Khorat Basin, northeastern Thailand[J]. Island Arc, 2010, 19(4): 605-621.
    [52]
    肖国桥, 张春霞, 郭正堂. 晚渐新世-早中新世青藏高原隆升与东亚季风演化[J]. 自然杂志, 2014, 36(3): 165-169. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201403003.htm

    Xiao G Q, Zhang C X, Guo Z T. Initiation of East Asian monsoon system related to Tibetan Plateau uplift from the Latest Oligocene to the Earliest Miocene[J]. Chinese Journal of Nature, 2014, 36(3): 165-169(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201403003.htm
    [53]
    Liu X M, Gao S, Diwu C, et al. Precambrian crustal growth of Yangtze Craton as revealed by detrital zircon studies[J]. American Journal of Science, 2008, 308(4): 421-468.
    [54]
    Cen Y, Peng S B, Kusky T M, et al. Granulite facies metamorphic age and tectonic implications of BIFs from the Kongling Group in the northern Huangling anticline[J]. Journal of Earth Science, 2012, 23(5): 648-658.
    [55]
    Jiao W F, Wu Y B, Yang S H, et al. The oldest basement rock in the Yangtze Craton revealed by zircon U-Pb age and Hf isotope composition[J]. Science in China: Earth Sciences, 2009, 52(9): 1393-1399.
    [56]
    Zhao J H, Zhou M F, Zheng J P. Neoproterozoic high-K granites produced by melting of newly formed mafic crust in the Huangling region, South China[J]. Precambrian Research, 2013, 233: 93-107.
    [57]
    Huang H Y, He D F, Li D, et al. Zircon U-Pb ages and Hf isotope analysis of Neoproterozoic Yaolinghe Group sedimentary rocks in the Chengkou area, South Qinling: Provenance and paleogeographic implications[J]. Precambrian Research, 2021, 355: 106088.
    [58]
    Ling W L, Duan R C, Liu X M, et al. U-Pb dating of detrital zircons from the Wudangshan Group in the South Qinling and its geological significance[J]. Chinese Science Bulletin, 2010, 55(22): 2440-2448.
    [59]
    Qin J F, Lai S C, Grapes R, et al. Geochemical evidence for origin of magma mixing for the Triassic monzonitic granite and its enclaves at Mishuling in the Qinling Orogen (Central China)[J]. Lithos, 2009, 112(3/4): 259-276.
    [60]
    Zhu X Y, Chen F K, Li S Q, et al. Crustal evolution of the North Qinling terrain of the Qinling Orogen, China: Evidence from detrital zircon U-Pb ages and Hf isotopic composition[J]. Gondwana Research, 2011, 20(1): 194-204.
    [61]
    Xiao B, Li Q, Liu S, et al. Highly fractionated Late Triassic Ⅰ-type granites and related molybdenum mineralization in the Qinling Orogenic Belt: Geochemical and U-Pb-Hf and Re-Os isotope constraints[J]. Ore Geology Reviews, 2014, 56: 220-233.
    [62]
    Wang R R, Xu Z Q, Santosh M, et al. Petrogenesis and tectonic implications of the Early Paleozoic intermediate and mafic intrusions in the South Qinling Belt, Central China: Constraints from geochemistry, zircon U-Pb geochronology and Hf isotopes[J]. Tectonophysics, 2017, 712: 270-288.
    [63]
    Zhu X Y, Chen F K, Liu B X, et al. Geochemistry and zircon ages of mafic dikes in the South Qinling, Central China: Evidence for Late Neoproterozoic continental rifting in the northern Yangtze Block[J]. International Journal of Earth Sciences, 2015, 104(1): 27-44.
    [64]
    Zhao Z F, Zheng Y F, Wei C S, et al. Zircon U-Pb ages, Hf and O isotopes constrain the crustal architecture of the ultrahigh-pressure Dabie Orogen in China[J]. Chemical Geology, 2008, 253(3/4): 222-242.
    [65]
    Wu Y B, Gao S, Zhang H F, et al. U-Pb age, trace-element, and Hf-isotope compositions of zircon in a quartz vein from eclogite in the western Dabie Mountains: Constraints on fluid flow during early exhumation of ultrahigh-pressure rocks[J]. American Mineralogist, 2009, 94(2/3): 303-312.
    [66]
    Zhou L G, Xia Q X, Zheng Y F, et al. Multistage growth of garnet in ultrahigh-pressure eclogite during continental collision in the Dabie Orogen: Constrained by trace elements and U-Pb ages[J]. Lithos, 2011, 127(1/2): 101-127.
    [67]
    Chen L, Ma C Q, She Z B, et al. Petrogenesis and tectonic implications of A-type granites in the Dabie Orogenic Belt, China: Geochronological and geochemical constraints[J]. Geological Magazine, 2009, 146(5): 638-651.
    [68]
    Xu H J, Ma C Q, Zhang J F, et al. Early Cretaceous Low-Mg adakitic granites from the Dabie Orogen, eastern China: Petrogenesis and implications for destruction of the over-thickened lower continental crust[J]. Gondwana Research, 2013, 23(1): 190-207.
    [69]
    Zhang C, Ma C Q, Holtz F. Origin of high-Mg adakitic magmatic enclaves from the Meichuan Pluton, southern Dabie Orogen (Central China): Implications for delamination of the lower continental crust and melt-mantle interaction[J]. Lithos, 2010, 119(3/4): 467-484.
    [70]
    Xue H M, Dong S W, Jian P. Zircon U-Pb SHRIMP ages of weakly to unmetamorphosed granitoids of the Yangtze basement outcrop in Dabieshan, Central China[J]. Journal of Asian Earth Sciences, 2006, 27(6): 779-787.
    [71]
    Wu Y B, Gao S, Zhang H F, et al. Timing of UHP metamorphism in the Hong'an area, western Dabie Mountains, China: Evidence from zircon U-Pb age, trace element and Hf isotope composition[J]. Contributions to Mineralogy and Petrology, 2007, 155(1): 123-133.
    [72]
    Wu Y B, Lei N Z. Zircon U-Pb age, trace element, and Hf isotope evidence for Paleoproterozoic granulite-facies metamorphism and Archean crustal remnant in the Dabie Orogen[J]. Journal of Earth Science (Wuhan, China), 2008, 19(2): 110-134.
    [73]
    Xie Z, Gao T S, Chen J F. Multi-stage evolution of gneiss from North Dabie: Evidence from zircon U-Pb chronology[J]. Chinese Science Bulletin, 2004, 49(18): 1963-1969.
    [74]
    Yao J L, Shu L S, Santosh M, et al. Geochronology and Hf isotope of detrital zircons from Precambrian sequences in the eastern Jiangnan Orogen: Constraining the assembly of Yangtze and Cathaysia Blocks in South China[J]. Journal of Asian Earth Sciences, 2013, 74: 225-243.
    [75]
    Yan C L, Shu L S, Santosh M, et al. The Precambrian tectonic evolution of the western Jiangnan Orogen and western Cathaysia Block: Evidence from detrital zircon age spectra and geochemistry of clastic rocks[J]. Precambrian Research, 2015, 268: 33-60.
    [76]
    Su J B, Dong S W, Zhang Y Q, et al. Detrital zircon geochronology of pre-Cretaceous strata: Tectonic implications for the Jiangnan Orogen, South China[J]. Geological Magazine, 2014, 151(6): 975-995.
    [77]
    Xu Y J, Xu Y S, Cawood P A, et al. Detrital zircon provenance of Upper Ordovician and Silurian strata in the northeastern Yangtze Block: Response to orogenesis in South China[J]. Sedimentary Geology, 2012, 267: 63-72.
    [78]
    Sun W H, Zhou M F, Gao J F, et al. Detrital zircon U-Pb geochronological and Lu-Hf isotopic constraints on the Precambrian magmatic and crustal evolution of the western Yangtze Block, SW China[J]. Precambrian Research, 2009, 172(1/2): 99-126.
    [79]
    Wang L J, Griffin W L, Yu J H, et al. U-Pb and Lu-Hf isotopes in detrital zircon from Neoproterozoic sedimentary rocks in the northern Yangtze Block: Implications for Precambrian crustal evolution[J]. Gondwana Research, 2013, 23(4): 1261-1272.
    [80]
    Chen Q, Sun M, Long X, et al. Provenance study for the Paleozoic sedimentary rocks from the west Yangtze Block: Constraint on possible link of South China to the Gondwana supercontinent reconstruction[J]. Precambrian Research, 2018, 309(S1): 271-289.
    [81]
    Xu Y, Luo Z, Huang X, et al. Zircon U-Pb and Hf isotope constraints on crustal melting associated with the Emeishan mantle plume[J]. Geochimica et Cosmochimica Acta, 2008, 72(13): 3084-3104.
    [82]
    Wang Y J, Fan W M, Liang X Q, et al. SHRIMP zircon U-Pb geochronology of Indosinian granites in Hunan Province and its petrogenetic implications[J]. Chinese Science Bulletin, 2005, 50(13): 1395-1403.
    [83]
    林清茶, 夏斌, 张玉泉. 川南德昌地区茨达碱性岩锆石SHRIMP U-Pb定年[J]. 地质通报, 2006, 25(3): 398-401. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200708013.htm

    Lin Q C, Xia B, Zhang Y Q. Zircon SHRIMP U-Pb dating of the Cida alkali complex in the Dechang area, southern Sichuan, China[J]. Geological Bulletin of China, 2006, 25(3): 398-401(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200708013.htm
    [84]
    何梦颖, 郑洪波, 贾军涛. 长江现代沉积物碎屑锆石U-Pb年龄及Hf同位素组成与物源示踪研究[J]. 第四纪研究, 2013, 33(4): 656-670. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ201304004.htm

    He M Y, Zheng H B, Jia J T. Detrital zircon U-Pb dating and Hf isotope of modern sediments in the Yangtze River: Implication for the sediment provenance[J]. Quaternary Sciences, 2013, 33(4): 656-670(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ201304004.htm
    [85]
    Qiu Y M, Gao S, Mcnaughton N J, et al. First evidence of >3.2 Ga continental crust in the Yangtze Craton of South China and its implications for Archean crustal evolution and Phanerozoic tectonics[J]. Geology, 2000, 28(1): 11-14.
    [86]
    Zhang S B, Zheng Y F, Wu Y B, et al. Zircon U-Pb age and Hf isotope evidence for 3.8 Ga crustal remnant and episodic reworking of Archean crust in South China[J]. Earth and Planetary Science Letters, 2006, 252(1/2): 56-71.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(157) PDF Downloads(60) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return