Citation: | Song Chen, Yang Bing, Zhang Chaomo, Zhu Boyuan, Zhang Zhansong. Investigation of pore structure and permeability estimation models of Kongdian Formation glutenites in the Bozhong 19-6 Gasfield[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 274-285. doi: 10.19509/j.cnki.dzkq.2022.0093 |
The pore structure of glutenite in Bozhong 19-6 Gasfield is complicated. In order to improve the estimation accuracy of permeability, it is necessary to start with the pore structure and find the pore structure factor with the best correlation with permeability. Taking the pore structure and permeability of 43 Kongdian Formation glutenites as the research object, using rock casting thin slices to determine the pore types, and obtaining pore-throat size distribution characteristics and pore structure parameters through high-pressure mercury intrusion. Combining pore types and pore structure parameters to analyze the relationship between pore structure and permeability, a permeability evaluation model based on pore structure parameters was established. Studies have shown that there are differences in the pore structure between different types of dissolved pores. The pore structure of dissolved pores in the grain is the best, and the pore structure of dissolved pores in the cement is the worst. The physical properties of glutenite with different types of dissolution pores vary greatly. The rock samples with intragranular dissolution pores and no cement dissolution pores have the best physical properties. Different pore structure factors have inconsistent degrees of permeability control. Among them, the permeability model which based on pore throat size, connectivity, ratio and shape has the highest accuracy. The large pore throat radius and good connectivity of the dissolved pores in the glutenite grains of the Kongdian Formation of BZ19-6 Gasfield are the main reasons for the good reservoir and seepage capacity of this kind of rocks. The average pore throat radius, mercury removal efficiency, average pore throat volume ratio and fractal dimension are suitable for estimating the permeability of glutenite reservoirs with complex pore structures and (extremely) low porosity and permeability, in order to provide technical support for the permeability evaluation of glutenite reservoirs inBozhong Depression, Bohai Bay Basin.
[1] |
Chehrazi A, Rezaee R. A systematic method for permeability prediction, a Petro-Facies approach[J]. Journal of Petroleum Science and Engineering, 2012, 82/83(2): 1-16.
|
[2] |
肖佃师, 卢双舫, 陆正元, 等. 联合核磁共振和恒速压汞方法测定致密砂岩孔喉结构[J]. 石油勘探与开发, 2016, 43(6): 961-970. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201606014.htm
Xiao D S, Lu S F, Lu Z Y, et al. Combining nuclear magnetic resonance and rate-controlled porosimetry to probe the pore-throat structure of tight sandstones[J]. Petroleum Exploration and Development, 2016, 43(6): 961-970 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201606014.htm
|
[3] |
韩玉娇, 周灿灿, 范宜仁, 等. 基于孔径组分的核磁共振测井渗透率计算新方法: 以中东A油田生物碎屑灰岩储集层为例[J]. 石油勘探与开发, 2018, 45(1): 170-178. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201801021.htm
Han Y J, Zhou C C, Fan Y R, et al. A new permeability calculation method using nuclear magnetic resonance logging based on pore sizes: A case study of bioclastic limestone reservoirs in the A oilfield of the Mid-East[J]. Petroleum Exploration and Development, 2018, 45(1): 170-178 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201801021.htm
|
[4] |
Lai J, Wang G W, Wang Z Y, et al. A review on pore structure characterization in tight sandstones[J]. Earth-Science Reviews, 2018, 177: 436-457. doi: 10.1016/j.earscirev.2017.12.003
|
[5] |
王伟, 宋渊娟, 黄静, 等. 利用高压压汞实验研究致密砂岩孔喉结构分形特征[J]. 地质科技通报, 2021, 40(4): 22-30. doi: 10.19509/j.cnki.dzkq.2021.0402
Wan W, Song Y J, Huang J, et al. Fractal characteristics of pore-throat structure in tight sandstones using high-pressure mercury intrusion porosimetry[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 22-30 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0402
|
[6] |
汪新光, 张冲, 张辉, 等. 基于微观孔隙结构的低渗透砂岩储层分类评价[J]. 地质科技通报, 2021, 40(4): 93-103. doi: 10.19509/j.cnki.dzkq.2021.0429
Wang X G, Zhang C, Zhang H, et al. Classification and evaluation of low-permeability sand reservoir based on micro-pore structure[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 93-103 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0429
|
[7] |
Wells J D, Amaefule J O. Capillary pressure and permeability relationships in tight gas sands[C]//Anon. Low permeability gas reservoirs symposium. [S. l. ]: Society of Petroleum Engineers, 1985.
|
[8] |
窦文超, 刘洛夫, 吴康军, 等. 基于压汞实验研究低渗储层孔隙结构及其对渗透率的影响: 以鄂尔多斯盆地西南部三叠系延长组长7储层为例[J]. 地质论评, 2016, 62(2): 502-511. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201602022.htm
Dou W C, Liu L F, Wu K J, et al. Pore structure characteristics and its effect on permeability by mercury injection measurement: An example from Triassic Chang-7 reservoir, Southwest Ordos Basin[J]. Geological Review, 2016, 62(2): 502-511 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201602022.htm
|
[9] |
Kaufmann J, Loser R, Leemann A. Analysis of cement-bonded materials by multi-cycle mercury intrusion and nitrogen sorption[J]. Journal of Colloid and Interface Science, 2009, 3(36): 730-737.
|
[10] |
喻建, 马捷, 路俊刚, 等. 压汞-恒速压汞在致密储层微观孔喉结构定量表征中的应用: 以鄂尔多斯盆地华池-合水地区长7储层为例[J]. 石油实验地质, 2015, 37(6): 789-795. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201506019.htm
Yu J, Ma J, Lu J G, et al. Application of mercury injection and rate-controlled mercury penetration in quantitative characterization of microscopic pore structure of tight reservoirs: A case study of the Chang 7 reservoir in Huachi-Heshui area, the Ordos Basin[J]. Petroleum Geology and Experiment, 2015, 37(6): 789-795 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201506019.htm
|
[11] |
Thien T, Nhan P, Natalie T. On permeability of corrugated pore membranes[J]. AIP Advances, 2020, 10: 045317. doi: 10.1063/5.0006017
|
[12] |
Tang X L, Jiang Z X, Li Z, et al. The effect of the variation in material composition on the heterogeneous pore structure of high-maturity shale of the Silurian Longmaxi Formation in the southeastern Sichuan Basin, China[J]. Journal of Natural Gas Science and Engineering, 2015, 23: 464-473. doi: 10.1016/j.jngse.2015.02.031
|
[13] |
Xi K, Cao Y, Haile B G, et al. How does the pore-throat size control the reservoir quality and oiliness of tight sandstones? The case of the Lower Cretaceous Quantou Formation in the southern Songliao Basin, China[J]. Marine and Petroleum Geology, 2016, 76: 1-15. doi: 10.1016/j.marpetgeo.2016.05.001
|
[14] |
Clarkson C R, Solano N, Bustin R M. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion[J]. Fuel, 2013, 103: 606-616. doi: 10.1016/j.fuel.2012.06.119
|
[15] |
Zhang L C, Lu S F, Xiao D S, et al. Characterization of full pore size distribution and its significance to macroscopic physical parameters in tight glutenites[J]. Journal of Natural Gas Science and Engineering, 2017, 38: 434-449. doi: 10.1016/j.jngse.2016.12.026
|
[16] |
Guo X B, Huang Z L, Zhao L B, et al. Pore structure and multi-fractal analysis of tight sandstone using MIP, NMR and NMRC methods: A case study from the Kuqa Depression, China[J]. Journal of Petroleum Science and Engineering, 2019, 178: 544-558. doi: 10.1016/j.petrol.2019.03.069
|
[17] |
Chen X J, Yao G Q, Herrero-Bervera E, et al. A new model of pore structure typing based on fractal geometry[J]. Marine and Petroleum Geology, 2018, 98: 291-305. doi: 10.1016/j.marpetgeo.2018.08.023
|
[18] |
Swanson B F. A simple correlation between permeabilities and mercury capillary pressures[J]. Journal of Petroleum Technology, 1981, 33(12): 2498-2504.
|
[19] |
Guo B Y, Ghalambor A, Duan S K. Correlation between sandstone permeability and capillary pressure curves[J]. Journal of Petroleum Science and Engineering, 2004, 43: 239-246.
|
[20] |
Pittman E D. Relationship of porosity and permeability to various parameters derived from mercury injection-capillary pressure curves for sandstone[J]. The American Association of Petroleum Geologists Bulletin, 1992, 76(2): 191-198.
|
[21] |
Rezaee R, Saeedi A, Clennell B. Tight gas sands permeability estimation from mercury injection capillary pressure and nuclear magnetic resonance data[J]. Journal of Petroleum Science and Engineering, 2012, 88/89: 92-99.
|
[22] |
Kolodzie S. Analysis of pore throat size and use of the Waxman-Smits equation to determine OOIP in Spindle Field, Colorado[M]. [S. l. ]: National Academy of Sciences, 1980.
|
[23] |
张铜耀, 郝鹏. 渤中凹陷深层特低孔特低渗砂砾岩储层储集空间精细表征[J]. 地质科技通报, 2020, 39(4): 117-124. doi: 10.19509/j.cnki.dzkq.2020.0415
Zhang T Y, Hao P. Fine characterization of the reservoir space in deep ultra-low porosity and ultra-low permeability glutenite in Bozhong Sag[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 117-124 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0415
|
[24] |
边会媛, 韩博华, 王飞, 等. 柴北缘牛东地区砂砾岩储层特征及分类评价[J]. 西安科技大学学报, 2020, 40(5): 148-155. https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB202005020.htm
Bian H Y, Han B H, Wang F, et al. Characteristics and classification of glutenite reservoirs in Niudong area, north margin of Qaidam Basin[J]. Journal of Xi'an University of Science and Technology, 2020, 40(5): 894-901. https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB202005020.htm
|
[25] |
万琳, 代黎明, 汤国民, 等. 湖相混积岩储层孔喉组合特征多尺度表征及评价[J]. 地球科学, 2020, 45(10): 337-348. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202010025.htm
Wan L, Dai L M, Tang G M, et al. Multi-scale characterization and evaluation of pore-throat combination characteristics of lacustrine mixed rock reservoir[J]. Earth Science, 2020, 45(10): 337-348 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202010025.htm
|
[26] |
侯明才, 曹海洋, 李慧勇, 等. 渤海海域渤中19-6构造带深层潜山储层特征及其控制因素[J]. 天然气工业, 2019, 39(1): 33-44. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201901005.htm
Hou M C, Cao H Y, Li H Y, et al. Characteristics and controlling factors of deep buried-hill reservoirs in the BZ19-6 structural belt, Bohai Sea area[J]. Natural Gas Industry, 2019, 39(1): 33-44 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201901005.htm
|
[27] |
Soeder D J, Chowdlah P. Pore geometry in high and low permeability sandstones: Travis Peak Formation East Texas[J]. SPE Formation Evaluation, 1990, 5(4): 421-430.
|
[28] |
张任风, 张占松, 张超谟, 等. 渤中19-6气田潜山变质岩储层类型特征与电成像测井识别[J]. 东北石油大学学报, 2019, 43(5): 58-65. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY201905007.htm
Zhang R F, Zhang Z S, Zhang C M, et al. Reservoir type characteristics and identification by electrical imaging logging of buried hill in BZ19-6 Gas Field[J]. Journal of Northeast Petroleum University, 2019, 43(5): 58-65 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY201905007.htm
|
[29] |
徐长贵, 于海波, 王军, 等. 渤海海域渤中19-6大型凝析气田形成条件与成藏特征[J]. 石油勘探与开发, 2019, 46(1): 25-38. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201901003.htm
Xu C G, Yu H B, Wang J, et al. Formation conditions and accumulation characteristics of Bozhong 19-6 large condensate gas field in offshore Bohai Bay Basin[J]. Petroleum Exploration and Development, 2019, 46(1): 25-38 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201901003.htm
|
[30] |
Washburn E W. Note on a method of determining the distribution of pore sizes in a porous material[J]. Proceedings of the National Academy of Science, 1921, 7: 115-116.
|
[31] |
熊生春, 储莎莎, 皮淑慧, 等. 致密油藏储层微观孔隙特征与可动用性评价[J]. 地球科学, 2017, 42(8): 1379-1385. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201708015.htm
Xiong S C, Chu S S, Pi S H, et al. Micro-pore characteristics and recoverability of tight oil reservoirs[J]. Earth Science, 2017, 42(8): 1379-1385. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201708015.htm
|
[32] |
Sing K S, Everett D H, Haul R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure and Applied Chemistry, 1985, 57: 603-619.
|
[33] |
熊钰, 傅希桐, 李骞, 等. 气体管流到达西流的缝高界限实验测试与理论计算[J]. 石油勘探与开发, 2022, 49(3): 538-547. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202203010.htm
Xiong Y, Fu X T, Li Q, et al. Experimental test and theoretical calculation of the fracture height limit of gas pipe flow to Darcy flow[J]. Petroleum Explorationand Development, 2022, 49(3): 538-547(in Chinese with Englishabstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202203010.htm
|
[34] |
肖忠祥, 肖亮, 张伟. 利用毛管压力曲线计算砂岩渗透率的新方法[J]. 石油物探, 2008, 47(2): 204-207. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT200802022.htm
Xiao Z X, Xiao L, Zhang W. A new method for calculating sandstone permeability by using capillary pressure curves[J]. Geophysical Prospecting for Petroleum, 2008, 47(2): 204-207 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT200802022.htm
|
[35] |
Rezaee M R, Jafari A, Kazemzadeh E. Relationships between permeability, porosity and pore throat size in carbonate rocks using regression analysis and neural networks[J]. Journal of Geophysics and Engineering, 2006, 3(4): 370-376.
|
[36] |
Gao Z Y, Hu Q H. Estimating permeability using median pore-throat radius obtained from mercury intrusion porosimetry[J]. Journal of Geophysics and Engineering, 2013, 10(2): 025014.
|
[37] |
Liu J Q, Zhang C M, Zhang Z S. Combine the capillary pressure curve data with the porosity to improve the prediction precision of permeability of sandstone reservoir[J]. Journal of Petroleum Science and Engineering, 2016, 139: 43-48.
|