Citation: | Li Yang, Dai Zongyang, Zhang Jiewei, Xiao Duoyan, Li Dan, Zhao Xiaoyang, Li Tian, Huang Lan, Huang Youlin. Multiparameter reservoir evaluation method based on unsupervised learning: A case study of the reef beach reservoir of the Lower Triassic Feixianguan Formation in the Pubaoshan area[J]. Bulletin of Geological Science and Technology, 2023, 42(5): 285-292. doi: 10.19509/j.cnki.dzkq.2022.0154 |
The formation and development of the reef-shoal reservoirs in the Lower Triassic Feixianguan Formation in the Pobaoshan area are the result of the comprehensive action of the geological historical period. Therefore, only using a single factor in reservoir evaluation will inevitably lead to deviations.
The k-means cluster analysis method and principal component analysis method were used to classify and evaluate the reservoir in the study area.
The results show that: On the premise that three different influencing factors of dolomite thickness, average porosity and effective reservoir thickness of the Lower Triassic Feixianguan Formation reef-shoal reservoir in the Pubaoshan area are known, gridding different planes to extract reservoir characteristic data of different influencing factors. The combined elbow method and contour method are used to analyze reservoir characteristic data and divide the reservoir into 4 development types. Then k-means cluster analysis method is applied to assign class attributes to the known data points. Using principal component analysis to reduce the dimensionality of different reservoir characteristic data to form a new comprehensive parameter. The parameter contribution rate can reach 0.882. According to the classification results of k-means, the mean values of the comprehensive parameters of different types of principal component analysis of the four reservoirs were calculated, which were 0.404, 0.640 and 0.716, respectively, as the demarcation point of the reservoir evaluation zone. Finally, this quantitative method is used to reasonably integrate the different characteristic plans of the study area to form a comprehensive evaluation map of the reservoir.
The research results can effectively classify and evaluate the reservoir in the study area and predict favorable exploration areas.
[1] |
汪少勇, 李建忠, 郭秋麟, 等. 层次分析法在致密油有利区优选中的应用: 以川中侏罗系大安寨段为例[J]. 地球科学进展, 2015, 30(6): 715-723. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201506012.htm
Wang S Y, Li J Z, Guo Q L, et al. Application of AHP method to favorable area optimization for tight oil: A case study in Daanzhai Formation, Jurassic, central of the Sichuan Basin[J]. Advances in Earth Science, 2015, 30(6): 715-723(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201506012.htm
|
[2] |
李阳, 代宗仰, 黄蕾, 等. 叠合概率法在碳酸盐岩储层评价中的应用: 以辽河坳陷西部凹陷高升地区沙四段为例[J]. 中国石油勘探, 2019, 24(3): 361-368. doi: 10.3969/j.issn.1672-7703.2019.03.009
Li Y, Dai Z Y, Huang L, et al. Application of overlapping probability method in carbonate reservoir evaluation: A case study on 4th Member of Shahejie Formation in Gaosheng area of Western Sag, Liaohe Depression[J]. China Petroleum Exploration, 2019, 24(3): 361-368(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2019.03.009
|
[3] |
冯子齐. 鄂尔多斯盆地东南部山西组海陆过渡相页岩储层特征与评价[D]. 北京: 中国地质大学(北京), 2014.
Feng Z Q. Characteristics and evaluation of the organic-rich shale of Shanxi Formation, southeast in Ordos Basin[D]. Beijing: China University of Geosciences (Beijing), 2014(in Chinese with English abstract).
|
[4] |
刘凯, 石万忠, 王任, 等. 鄂尔多斯盆地杭锦旗地区盒1段致密砂岩孔隙结构分形特征及其与储层物性的关系[J]. 地质科技通报, 2021, 40(1): 57-68. doi: 10.19509/j.cnki.dzkq.2021.0102
Liu K, Shi W Z, Wang R, et al. Pore structure fractal characteristics and its relationship with reservoir properties of the First Member of Lower Shihezi Formation tight sandstone in Hangjinqi area, Ordos Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 57-68(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0102
|
[5] |
陈林, 陈孝红, 张保民, 等. 鄂西宜昌地区五峰组-龙马溪组页岩储层特征及其脆性评价[J]. 地质科技通报, 2020, 39(2): 54-61. doi: 10.19509/j.cnki.dzkq.2020.0206
Chen L, Chen X H, Zhang B M, et al. Reservoir characteristics and brittleness evaluation of Wufeng Formation-Longmaxi Formation shale in Yichang area, western Hubei Province[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 54-61(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0206
|
[6] |
朱伟, 顾韶秋, 曹子剑, 等. 基于模糊数学的滨里海盆地东南油气储层评价[J]. 石油与天然气地质, 2013, 34(3): 357-362. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201303016.htm
Zhu W, Gu S Q, Cao Z J, et al. Fuzzy mathematics-based reservoir evaluation in the southeastern Pre-Caspian Basin[J]. Oil & Gas Geology, 2013, 34(3): 357-362(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201303016.htm
|
[7] |
姬新元, 王红亮, 徐小龙, 等. 基于模糊数学理论的储层评价: 以鄂尔多斯盆地富黄地区延长组长9油层为例[J]. 科学技术与工程, 2019, 19(20): 49-55. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201920007.htm
Ji X Y, Wang H L, Xu X L, et al. Evaluation of reservoirs based on fuzzy mathematics: A case study from Chang 9 Formation in Fuhuang area, Ordos Basin[J]. Science Technology and Engineering, 2019, 19(20): 49-55(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201920007.htm
|
[8] |
郑璇, 赵军龙, 许建涛, 等. 神经网络技术在储层分类评价中的应用[J]. 陕西煤炭, 2013, 32(2): 63-66. https://www.cnki.com.cn/Article/CJFDTOTAL-SXMJ201302025.htm
Zheng X, Zhao J L, Xu J T, et al. Application of neural network technology in classification and evaluation of reservoirs[J]. Shaanxi Coal, 2013, 32(2): 63-66(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SXMJ201302025.htm
|
[9] |
贺亚维, 张荣军, 郭永宏. 延川地区储层特征及综合评价[J]. 西安科技大学学报, 2019, 39(5): 811-818. https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB201905011.htm
He Y W, Zhang R J, Guo Y H. Geological characteristics and comprehensive evaluation of reservoir in Yanchuan area[J]. Journal of Xi'an University of Science and Technology, 2019, 39(5): 811-818(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB201905011.htm
|
[10] |
邹妞妞, 庞雷, 史基安, 等. 准噶尔盆地西北缘玛北地区百口泉组砂砾岩储层评价[J]. 天然气地球科学, 2015, 26(增刊2): 63-72. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX2015S2007.htm
Zou N N, Pan L, Shi J A, et al. Reservoir evaluation of glutenite body of Baikouquan Formation in Mabei area, NW Junggar Basin[J]. Natural Gas Geoscience, 2015, 26(S2): 63-72(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX2015S2007.htm
|
[11] |
任培罡, 夏存银, 李媛, 等. 自组织神经网络在测井储层评价中的应用[J]. 地质科技情报, 2010, 29(3): 114-118. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201003019.htm
Ren P G, Xia C Y, Li Y, et al. Application of self-organizing neural network to logging reservoir evaluation[J]. Geological Science and Technology Information, 2010, 29(3): 114-118(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201003019.htm
|
[12] |
周林, 刘皓天, 周坤, 等. 致密砂岩储层"甜点"识别及评价方法[J]. 地质科技通报, 2020, 39(4): 165-173. doi: 10.19509/j.cnki.dzkq.2020.0420
Zhou L, Liu H T, Zhou K, et al. "Sweet spot" identification and evaluation of tight sandstone reservoir[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 165-173(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0420
|
[13] |
王千, 王成, 冯振元, 等. k-means聚类算法研究综述[J]. 电子设计工程, 2012, 20(7): 21-24. https://www.cnki.com.cn/Article/CJFDTOTAL-GWDZ201207009.htm
Wang Q, Wang C, Feng Z Y, et al. Review of k-means clustering algorithm[J]. Electronic Design Engineering, 2012, 20(7): 21-24(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GWDZ201207009.htm
|
[14] |
Kapageridis I K. Variable lag variography using k-means clustering[J]. Computers and Geosciences, 2015, 85: 49-63.
|
[15] |
姜艳娇, 孙建孟, 高建申, 等. X区块低孔渗气藏储层特征及分类评价研究[J]. 科学技术与工程, 2017, 17(10): 164-172. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201710028.htm
Jiang Y J, Sun J M, Gao J S, et al. Study on reservoir characteristics and classification evaluation in low porosity and low permeability gas reservoir of X Block[J]. Science Technology and Engineering, 2017, 17(10): 164-172(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201710028.htm
|
[16] |
张建萍, 刘希玉. 基于聚类分析的K-means算法研究及应用[J]. 计算机应用研究, 2007, 24(5): 166-168. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ200705050.htm
Zhang J P, Liu X Y. Application in cluster's analysis is analyzed in children development period[J]. Application Research of Computers, 2007, 24(5): 166-168(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ200705050.htm
|
[17] |
段友祥, 柳璠, 孙歧峰, 等. 基于相带划分的孔隙度预测[J]. 南京大学学报: 自然科学版, 2019, 55(6): 934-941. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ201906006.htm
Duan Y X, Liu P, Sun Q F, et al. Porosity prediction based on sedimentary facies[J]. Journal of Nanjing University: Natural Science Edition, 2019, 55(6): 934-941(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ201906006.htm
|
[18] |
Goutte C, Toft P, Rostrup E, et al. On clustering fMRI time series[J]. Neuro Image, 1999, 9(3): 298-310.
|
[19] |
Ketchen D J, Shook C L. The application of cluster analysis in strategic management research: An analysis and critique[J]. Strategic Management Journal, 1996, 17(6): 441-458.
|
[20] |
de Amorim R C, Hennig C. Recovering the number of clusters in data sets with noise features using feature rescaling factors[J]. Information Sciences, 2015, 324: 126-145.
|
[21] |
Forghani Y. Comment on "DSKmeans: A new k-means-type approach to discriminative subspace clustering" by X. Huang et al. Knowledge-based systems, Vol. 70, pp. 293-300, 2014[J]. Knowledge-Based Systems, 2016, 118: 1-3.
|
[22] |
Gündoĝdu Y, Karabaĝh P, Alptekin H, et al. Comparison of performances of Principal Component Analysis (PCA) and Factor Analysis (FA) methods on the identification of cancerous and healthy colon tissues[J]. International Journal of Mass Spectrometry, 2019, 445: 116204.
|
[23] |
Aversano G, Parra-Alvarez J C, Isaac B J, et al. PCA and Kriging for the efficient exploration of consistency regions in Uncertainty Quantification[J]. Proceedings of the Combustion Institute, 2019, 37(4): 4461-4469.
|
[24] |
彭仕宓, 熊琦华, 王才经, 等. 储层综合评价的主成分分析方法[J]. 石油学报, 1994(增刊1): 187-194. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB4S1.023.htm
Peng S M, Xiong Q H, Wang C J, et al. A method of principle component analysis in comprehensive reservoir evaluation[J]. Acta Petrolei Sinica, 1994(S1): 187-194(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB4S1.023.htm
|