Volume 42 Issue 2
Mar.  2023
Turn off MathJax
Article Contents
Hou Lianlang, Liu Xiangjun, Liang Lixi, Shi Xin, Ma Xiugang, Cao Wen. Experimental investigation of the influence of pressure and temperature on the acoustic velocity and spectral characteristics of carbonate rocks[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 170-177. doi: 10.19509/j.cnki.dzkq.2022.0157
Citation: Hou Lianlang, Liu Xiangjun, Liang Lixi, Shi Xin, Ma Xiugang, Cao Wen. Experimental investigation of the influence of pressure and temperature on the acoustic velocity and spectral characteristics of carbonate rocks[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 170-177. doi: 10.19509/j.cnki.dzkq.2022.0157

Experimental investigation of the influence of pressure and temperature on the acoustic velocity and spectral characteristics of carbonate rocks

doi: 10.19509/j.cnki.dzkq.2022.0157
  • Received Date: 21 Aug 2021
  • The acoustic wave propagation characteristics of carbonate rocks have important application value. The systematic analysis of the effects of fluid type, fluid pressure, temperature and confining pressure on acoustic wave velocity and spectrum characteristics of carbonate rocks still needs to be strengthened. Carbonate rocks with pores and fractures mined from the Dengying Formation in the Hechuan and Tongnan areas, Sichuan Basin, were selected to carry out acoustic transmission experiments under different conditions. The effects of confining pressure, pore pressure, pressure difference, temperature and fluid category on the acoustic velocity of carbonate rocks and the dominant frequency characteristics of transmitted acoustic waves were analyzed. The results show that the sensitivity of acoustic velocity to pressure change in saturated formation water is lower than that in saturated nitrogen. In the process of pressure change, the variation amplitude of acoustic velocity is positively correlated with the porosity of rock samples. Within the experimental temperature range, with increasing temperature, the P-wave velocity and S-wave velocity of the saturated formation water and nitrogen samples decreases lightly. When the differential stress is low, the acoustic velocity corresponding to the way of changing the differential stress by changing the pore pressure is greater than that by changing the confining pressure, and the conclusion is opposite when the differential stress is high. Under the same differential stress condition, the acoustic velocity is more sensitive to changes in the confining pressure than the changes of pore pressure. The included angle and slope difference of the two acoustic velocity-differential stress curves corresponding to constant confining pressure and constant pore pressure can qualitatively reflect the relative size of the dynamic Biot effective stress coefficient of carbonate rock samples. With increasing differential stress, the contribution of pore pressure to effective stress decreases gradually. With increasing pore pressure, the dominant frequency amplitudes of the P-wave and S-wave gradually decrease. With increasing confining pressure, the dominant frequency amplitudes of the P-wave and S-wave gradually increase. With increasing temperature, the dominant frequency amplitudes of the P-wave and S-wave gradually increase. The research results are helpful to the theoretical research and engineering application of pore pressure predictionin carbonate formation based on logging acoustic information.

     

  • loading
  • [1]
    金之钧, 庞雄奇, 吕修祥. 中国海相碳酸盐岩油气勘探[J]. 勘探家, 1998, 3(4): 66-68. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY199804019.htm

    Jin Z J, Pang X Q, Lü X X. Oil and gas exploration of marine carbonate rocks in China[J]. Petroleum Exploration, 1998, 3(4): 66-68(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY199804019.htm
    [2]
    洪毅. 海相碳酸盐岩地层孔隙压力预测研究[D]. 湖北荆州: 长江大学, 2015.

    Hong Y. Study on pore pressure prediction of marine carbonate formation[D]. Jingzhou Hubei: Changjiang University, 2015(in Chinese with English abstract).
    [3]
    张攀, 刘红岐, 王伟俊, 等. 常规测井-气测资料在H油田K油藏碳酸盐岩储层流体识别中的应用[J]. 地质科技通报, 2022, 41(3): 140-149. doi: 10.19509/j.cnki.dzkq.2021.0062

    Zhang P, Liu H Q, Wang W J, et al. Application of conventional logging and gas logging data to fluid identification of carbonate reservoirs in K reservoir of H Oilfield[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 140-149(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0062
    [4]
    赵亚男, 王小强, 余文丽, 等. X射线荧光光谱法测定石灰岩和白云岩中主次量组分[J]. 中国无机分析化学, 2021, 11(4): 25-30. doi: 10.3969/j.issn.2095-1035.2021.04.005

    Zhao Y N, Wang X Q, Yu W L, et al. Determination of major and minor components in limestone and dolomite by X-ray fluorescence spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2021, 11(4): 25-30(in Chinese with English abstract). doi: 10.3969/j.issn.2095-1035.2021.04.005
    [5]
    廉培庆, 高文彬, 汤翔, 等. 基于CT扫描图像的碳酸盐岩油藏孔隙分类方法[J]. 石油与天然气地质, 2020, 41(4): 852-861. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202004018.htm

    Lian P Q, Gao W B, Tang X, et al. Workflow for pore-type classification of carbonate reservoirs based on CT scanned images[J]. Oil & Gas Geology, 2020, 41(4): 852-861(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202004018.htm
    [6]
    李长海, 赵伦, 刘波, 等. 碳酸盐岩裂缝研究进展及发展趋势[J]. 地质科技通报, 2021, 40(4): 31-48. doi: 10.19509/j.cnki.dzkq.2021.0403

    Li C H, Zhao L, Liu B, et al. Research status and development trend of fractures in carbonate reservoir[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 31-48(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0403
    [7]
    王子振. 碳酸盐岩孔隙结构对其弹性波特性的影响规律研究[D]. 山东青岛: 中国石油大学(华东), 2016.

    Wang Z Z. Study on the influence of pore structure of carbonate rock on its elastic wave characteristics[D]. Qingdao Shandong: China University of Petroleum (East China), 2016(in Chinese with English abstract).
    [8]
    张树林, 赵铭海. 地层压力预测技术及其在油层保护中的应用[J]. 地质科技情报, 2002, 21(3): 43-47. doi: 10.3969/j.issn.1000-7849.2002.03.008

    Zhang S L, Zhao M H. Formation pressure prediction and its application in reservoir protection[J]. Geological Science and Technology Information, 2002, 21(3): 43-47(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2002.03.008
    [9]
    李勇, 杨海军, 郭小文, 等. 库车前陆盆地超压特征及测井响应[J]. 地质科技情报, 2015, 34(2): 136-142. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201502019.htm

    Li Y, Yang H J, Guo X W, et al. Characteristics of overpressure and well-log response of Kuqa foreland basin[J]. GeologicalScience and Technology Information, 2015, 34(2): 136-142(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201502019.htm
    [10]
    刘宇坤, 何生, 何治亮, 等. 基于多孔介质弹性理论的碳酸盐岩地层超压预测[J]. 地质科技情报, 2019, 38(4): 53-61. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904007.htm

    Liu Y K, He S, He Z L, et al. Overpressure prediction of carbonate formation based on elastic theory of porous media[J]. Geological Science and Technology Information, 2019, 38(4): 53-61(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904007.htm
    [11]
    刘向君, 杨超, 陈乔, 等. 孔洞型碳酸盐岩地层超声波实验研究[J]. 天然气工业, 2011, 31(8): 56-59. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201108016.htm

    Liu X J, Yang C, Chen Q, et al. Ultrasonic experimental study on vuggy carbonate formation[J]. Natural Gas Industry, 2011, 31(8): 56-59(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201108016.htm
    [12]
    曹均. 裂隙储层物理模型的实验研究[D]. 成都: 成都理工大学, 2003.

    Cao J. Experimental study on physical model of fractured reservoir[D]. Chengdu: Chengdu University of Technology, 2003(in Chinese with English abstract).
    [13]
    李天阳, 王子振, 王瑞和, 等. 含裂缝VTI介质的弹性波传播特性研究[J]. 地球物理学进展, 2015, 30(6): 2498-2504. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201506009.htm

    Li T Y, Wang Z Z, Wang R H, et al. Study on elastic wave propagation characteristics of fractured VTI media[J]. Progress in Geophysics, 2015, 30(6): 2498-2504(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201506009.htm
    [14]
    梁利喜, 周龙涛, 刘向君, 等. 孔洞结构对超声波衰减特性的影响研究[J]. 岩石力学与工程学报, 2015, 34(增刊1): 3208-3214. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1075.htm

    Liang L X, Zhou L T, Liu X J, et al. Study on the influence of hole structure on ultrasonic attenuation characteristics[J]. Journal of Rock Mechanics and Engineering, 2015, 34(S1): 3208-3214(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1075.htm
    [15]
    周游, 陈乔, 程亮, 等. 碳酸盐岩孔洞模型中超声波传播特性[J]. 科技导报. 2017, 35(18): 66-74. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201718018.htm

    Zhou Y, Chen Q, Cheng L, et al. Characteristics of ultrasonic propagation in carbonate rock pore model[J]. Science & Technology Review, 2017, 35(18): 66-74(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201718018.htm
    [16]
    陈乔, 刘向君, 梁利喜, 等. 裂缝模型声波衰减系数的数值模拟[J]. 地球物理学报, 2012, 55(6): 2044-2052. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201206025.htm

    Chen Q, Liu X J, Liang L X, et al. Numerical simulation of acoustic attenuation coefficient of fracture model[J]. Journal of Geophysics, 2012, 55(6): 2044-2052(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201206025.htm
    [17]
    Baechle G T, Colpaert A, Eberli G P, et al. Modeling velocity in carbonates using a dual-porosity DEM model[J]. SEG Technical Program Expanded Abstracts, 2007, 26(1): 1589.
    [18]
    Kazatchenko E, Markov M, Mousatov A. Simulation of acoustic velocities, electrical and thermal conductivities using unified pore-structure model of double-porosity carbonate rocks[J]. Journal of Applied Geophysics, 2006, 59(1): 16-35.
    [19]
    张明明, 梁利喜, 刘向君. 碳酸盐岩不同含水饱和度对声波传播特性影响[J]. 测井技术, 2017, 41(1): 14-19. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201701003.htm

    Zhang M M, Liang L X, Liu X J. Effect of different water saturation on acoustic propagation characteristics of carbonate rocks[J]. Well Logging Technology, 2017, 41(1): 14-19(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201701003.htm
    [20]
    刘向君, 王森, 刘洪, 等. 碳酸盐岩含气饱和度对超声波衰减特性影响的研究[J]. 石油地球物理勘探, 2012, 47(6): 926-930. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201206011.htm

    Liu X J, Wang S, Liu H, et al. Study on the influence of gas saturation of carbonate rocks on ultrasonic attenuation characteristics[J]. Petroleum Geophysical Exploration, 2012, 47(6): 926-930(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201206011.htm
    [21]
    曾鑫, 孙建孟, 崔瑞康, 等. 孔隙含气压力对不同孔隙结构砂岩声学属性的影响[J]. 科学技术与工程, 2020, 20(6): 2192-2201. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202006012.htm

    Zeng X, Sun J M, Cui R K, et al. Effect of pore gas pressure on acoustic properties of sandstone with different pore structure[J]. Science, Technology and Engineering, 2020, 20(6): 2192-2201(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202006012.htm
    [22]
    Siggins A F, Dewhurst D N. Saturation, pore pressure and effective stress from sandstone acoustic properties[J]. Geophysical Research Letters, 2003, 30(2): 61-79.
    [23]
    Brandt B H, Calif L H. A study of the speed of sound in porous granular media[J]. Journal of Applied Mechanics, 1955, 22(4): 479-486.
    [24]
    Todd T, Simmons G. Effect of pore pressure on the velocity of compressional waves in low-porosity rocks[J]. Journal of Geophysical Research (1896-1977), 1972, 77(20): 3731-3743.
    [25]
    马中高. Biot系数和岩石弹性模量的实验研究[J]. 石油与天然气地质, 2008, 29(1): 135-140. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200801023.htm

    Ma Z G. Experimental investigation into Biot's coefficient and rock elastic modulus[J]. Oil & Gas Geology, 2008, 29(1): 135-140(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200801023.htm
    [26]
    夏宏泉, 彭梦, 宋二超. 岩石各向异性Biot系数的获取方法及应用[J]. 测井技术, 2019, 43(5): 478-483. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201905008.htm

    Xia H Q, Peng M, Song E C. Calculation method and application of rock anisotropic Biot coefficient[J]. Well Logging Technology, 2019, 43(5): 478-483(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201905008.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(253) PDF Downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return