Volume 41 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Xing Liting, Yu Miao, Su Qingwei, Zhao Zhenhua, Gao Yang, Zhang Yunfeng. Influence and repair of underground engineering construction on karst flow field[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 242-254. doi: 10.19509/j.cnki.dzkq.2022.0190
Citation: Xing Liting, Yu Miao, Su Qingwei, Zhao Zhenhua, Gao Yang, Zhang Yunfeng. Influence and repair of underground engineering construction on karst flow field[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 242-254. doi: 10.19509/j.cnki.dzkq.2022.0190

Influence and repair of underground engineering construction on karst flow field

doi: 10.19509/j.cnki.dzkq.2022.0190
  • Received Date: 15 Jun 2022
    Available Online: 10 Nov 2022
  • Engineering construction changes the groundwater flow field and endanger the safety of buildings. Taking the large-scale underground complex along Jinan Jingshi Road as an example, the impact of engineering construction on the groundwater seepage field is obtained by numerical simulation, and the groundwater flow field repair models are established. These results show that the underground spatial structure will block the normal movement of groundwater, and will reduce the bearing capacity of the foundation after the groundwater level is raised. After adding diversion measures to the underground space, the water level at the upstream surface will decrease with time, and the closer it is to the natural state, the slower the water level attenuation rate is. Due to the difference in the stratum structure, there is a great difference in the time when the backwater level basically drops. The number of diversion wells required to repair the flow field under different geological conditions has a negative correlation with the structural parameters of diversion geometry. The established equation for predicting the number of diversion wells fully reflects the complexity and variability of geological conditions in karst areas. In addition to the structure of the fluid conducting geometry, the hydraulic gradient and permeability coefficient of the surrounding rock also affect the water conducting capacity of diversion measures. The permeability coefficient controls the speed of the water conducting rate, while the hydraulic gradient controls the occurrence of water conducting behavior. The implementation of diversion measures can reduce the impact of engineering construction on the groundwater environment and ensure that the impact of underground engineering construction on the water environment is controllable.

     

  • loading
  • [1]
    成建梅, 柳璨, 李敏敏, 等. 城市化进程下北京平原渗流场与地面沉降发展演化模拟[J]. 地质科技通报, 2020, 39(1): 43-52. doi: 10.19509/j.cnki.dzkq.2020.0105

    Cheng J M, Liu C, Li M M, et al. Numerical study on evolution of groundwater hydrodynamics and land subsidence under the process of metro politan urbanization in Beijing Plain, China[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 43-52(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0105
    [2]
    郭红东, 魏林森, 郑伟, 等. 地铁工程对兰州断陷盆地地下水环境的影响分析[J]. 水利水电技术, 2020, 51(8): 119-128. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ202008015.htm

    Guo H D, Wei L S, Zheng W, et al. Impact from subway project on groundwater environment in Lanzhou fault basin[J]. Water Resources and Hydropower Engineering, 2020, 51(8): 119-128(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ202008015.htm
    [3]
    Kontanz P O. 地下隧道和输水建筑物对地下水流动的影响[J]. 赵鹤平, 译. 地理译报, 1989(3): 29-31.

    Kontanz P O. Effect on groundwater flow due to tunnel and pipe constructions[J]. Transtated by Zhao H P. Progress in Geography, 1989(3): 29-31 (in Chinese).
    [4]
    Sun S Q, Li L P, Wang J, et al. Karst development mechanism and characteristics based on comprehensive exploration along Jinan metro, China[J]. Sustainability, 2018, 10(10): 3383. doi: 10.3390/su10103383
    [5]
    卢海平, 张发旺, 赵春红, 等. 我国南北方岩溶差异[J]. 中国矿业, 2018, 27(增刊2): 317-319. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA2018S2085.htm

    Lu H P, Zhang F W, Zhao C H, et al. Difference between southern karst and northern karst besides scientific issues that need attention[J]. China Mining Maganine, 2018, 27(S2): 317-319(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA2018S2085.htm
    [6]
    李喜, 殷坤龙, 陈标典, 等. 武汉白沙洲长江两岸岩溶塌陷易发性评价与地铁建设过程中的防治对策[J]. 地质科技通报, 2020, 39(6): 121-130. doi: 10.19509/j.cnki.dzkq.2020.0612

    Li X, Yin K L, Chen B D, et al. Evaluation of susceptibility to karst collapse on both sides of the Yangtze River in Baishazhou, Wuhan and preventive measures in the process of metro construction[J]. Bulletin of Geological Science and Technology, 2020, 39(6): 121-130(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0612
    [7]
    Cui Q L, Wu H N, Shen S L, et al. Chinese karst geology and measures to prevent geohazards during shield tunnelling in karst region with caves[J]. Natural Hazards, 2015, 77(1): 129-152. doi: 10.1007/s11069-014-1585-6
    [8]
    Wang X, Lai J, He S, et al. Karst geology and mitigation measures for hazards during metro system construction in Wuhan, China[J]. Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, 2020, 103(4): 2905-2927.
    [9]
    Qu R F, Zhou C B. On the influence of karst collapse on subway tunnel and karst treatment in Wuhan[J]. Electronic Journal of Geotechnical Engineering, 2016, 21(10): 3979-3992.
    [10]
    Ding L Y, Wu X G, Li H, et al. Study on safety control for Wuhan metro construction in complex environments[J]. International Journal of Project Management, 2011, 29(7): 797-807. doi: 10.1016/j.ijproman.2011.04.006
    [11]
    邓国基, 黄佳铭, 郑小战, 等. 广州市白云区岩溶发育特征与分布规律研究[J]. 中国地名, 2019(10): 54-56. https://www.cnki.com.cn/Article/CJFDTOTAL-NAME201910031.htm

    Deng G J, Huang J M, Zheng X Z, et al. Study on karst development characteristics and distribution in Baiyun District, Guangzhou[J]. China Place Name, 2019(10): 54-56(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-NAME201910031.htm
    [12]
    秦俭, 李身想. 浅谈南北方岩溶地貌差异成因[J]. 科技展望, 2014(14): 192. doi: 10.3969/j.issn.1672-8289.2014.14.169

    Qin J, Li S X. On the causes of karst landform differences between South and North[J]. Science and Technology, 2014(14): 192(in Chinese with English abstract). doi: 10.3969/j.issn.1672-8289.2014.14.169
    [13]
    刘光亚. 中国北方的岩溶水强径流带[J]. 河北地质大学学报, 2017, 40(2): 15-19. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDX201702003.htm

    Liu G Y. Strong runoff zone in karst water in northern China[J]. Journal of Hebei GEO University, 2017, 40(2): 15-19(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HBDX201702003.htm
    [14]
    叶安强, 张洋, 杨士友. 岩溶地区地下工程建设对地下水渗流的影响分析[J]. 西部资源, 2020(6): 102-104. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZY202006035.htm

    Ye A Q, Zhang Y, Yang S Y. Influence of underground engineering construction on groundwater seepage in karst area[J]. Western Resources, 2020(6): 102-104(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XBZY202006035.htm
    [15]
    Colombo L, Gattinoni P, Scesi L. Influence of underground structures and infrastructures on the groundwater level in the urban area of milan, Italy[J]. International Journal of Sustainable Development and Planning, 2017, 12(1): 176-184.
    [16]
    Esther S, Hyoung-Soo K, Kyoochul H, et al. Regional groundwater flow characteristics due to the subway system in Seoul, Korea[J]. Journal of Soil and Groundwater Environment, 2015, 20(3): 41-50.
    [17]
    Lan Y Y. Analysis of the influence of Nanchang Metro Line 4 on groundwater[J]. IOP Conference Series Earth and Environmental Science, 2017, 61(1): 012112.
    [18]
    Li F K, Gong H L, Chen B B, et al. Subsidence monitoring with Terra SAR-X data in Beijing Central Business District and subway tunnelings, China[J]. Proceedings of the International Association of Hydrological Sciences, 2020, 382(4): 125-130.
    [19]
    Ma Q Q, Li W T, Zhang Y J. Subway tunnel construction settlement analysis based on the combination of numerical simulation and neural network[J]. Scientific Programming, 2021(4): 46478744.
    [20]
    Wang J X, Deng Y S, Xu N, et al. Numerical simulation of land subsidence caused by subway train vibration using PFC[J]. Proceedings of the International Association of Hydrological Sciences, 2020, 382(4): 559-564.
    [21]
    赵振华, 邢立亭, 王立艳, 等. 济南市区轨道交通建设适宜性评价[J]. 铜业工程, 2017(3): 42-46. https://www.cnki.com.cn/Article/CJFDTOTAL-TYGC201703013.htm

    Zhao Z H, Xing L T, Wang L Y, et al. Subway construction suitability evaluation in Jinan urban area[J]. Copper Engineering, 2017(3): 42-46(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TYGC201703013.htm
    [22]
    郭红梅. 地下水数值模拟在济南地铁规划中的应用研究[J]. 勘察科学技术, 2012(5): 36-41. https://www.cnki.com.cn/Article/CJFDTOTAL-KCKX201205010.htm

    Guo H M. Application of groundwater numerical simulation on subway plan in Jinan[J]. Site Investigation Science and Technology, 2012(5): 36-41(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KCKX201205010.htm
    [23]
    庞炜, 刘永勤, 戴迎春. 济南轨道交通建设对泉水影响预测及情景分析[J]. 都市快轨交通, 2012, 25(1): 94-98. https://www.cnki.com.cn/Article/CJFDTOTAL-DSKG201201024.htm

    Pang W, Liu Y Q, Dai Y C. Prediction and scenario analysis of the influence of urban rail transit consrtuction on spring ecosytem in Jinan City[J]. Urban Rapid Rail Transit, 2012, 25(1): 94-98(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DSKG201201024.htm
    [24]
    王国富, 王倩, 路林海, 等. 济南轨道交通某深基坑降水与回灌数值分析[J]. 地下空间与工程学报, 2017, 13(5): 1280-1288. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201705020.htm

    Wang G F, Wang Q, Lu L H, et al. Numerical analysis on dewatering and recharging of a deep foundation pit of Jinan railway[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(5): 1280-1288(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201705020.htm
    [25]
    李严, 王家乐, 靳孟贵, 等. 运用水文时间序列分析识别济南泉域岩溶发育特征[J]. 地球科学, 2021, 46(7): 2583-2593. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202107024.htm

    Li Y, Wang J L, Jin M G, et al. Hydrodynamic characteristics of Jinan karst spring system identified by hydrologic time-series data[J]. Earth Science, 2021, 46(7): 2583-2593(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202107024.htm
    [26]
    孙尚渠. 复杂形态溶洞精细化表征及其对盾构隧道施工围岩稳定性的影响研究[D]. 济南: 山东大学, 2019.

    Sun S Q. Precise characterization of irregular cavity and its effect on surrounding rockmass stability of shield tunnel[D]. Jinan: Shandong University, 2019(in Chinese with English abstract).
    [27]
    徐军祥, 邢立亭, 魏鲁峰, 等. 济南岩溶水系统研究[M]. 北京: 冶金工业出版社, 2012.

    Xu J X, Xing L T, Wei L F. Study on karst water system in Jinan[M]. Beijing: Metallurgical Industry Press, 2012(in Chinese).
    [28]
    林宗元. 岩土工程试验监测手册[M]. 北京: 中国建筑工业出版社, 2005.

    Lin Z Y. Geotechnical engineering test monitoring manual[M]. Beijing: China Architecture and Architecture Press, 2005(in Chinese).
    [29]
    毛昶熙. 堤防工程手册[M]. 北京: 中国水利水电出版社, 2009.

    Mao C X. Dike engineering manual[M]. Beijing: China Water and Power Press, 2009(in Chinese).
    [30]
    Zheng C M, Bennett G D. 地下水污染物迁移模拟[M]. 孙晋玉译. 第2版. 北京: 高等教育出版社, 2009.

    Zheng C M, Bennett G D. Simulation of groundwater pollutant migration[M]. Translated by Sun J Y. Second Edition. Beijing: Higher Education Press, 2009(in Chinese).
    [31]
    朱学愚. 地下水水文学[M]. 北京: 中国环境科学出版社, 2005.

    Zhu X Y. Groundwater hydrology[M]. Beijing: China Environmental Science Press, 2005(in Chinese).
    [32]
    阳建新, 李发菊, 陈田华. 地下水位上升对浅基础地基承载力的影响[J]. 工程建设与设计, 2010(6): 95-99. https://www.cnki.com.cn/Article/CJFDTOTAL-GCJS201006033.htm

    Yang J X, Li F J, Chen T H. The influence about water table rise on bering capacity of shallow foundations[J]. Construction & Design for Engineering, 2010(6): 95-99(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCJS201006033.htm
    [33]
    张江. 地下水对地铁车站结构底板的受力影响研究[D]. 成都: 西南交通大学, 2017.

    Zhang J. Study on the influence of groundwater level on mechanical behavior of subway station floor[D]. Chengdu: Southwest Jiaotong University, 2017(in Chinese with English abstract).
    [34]
    毛邦燕, 许模, 唐万春, 等. 地铁建设中地下水与环境岩土体相互作用研究[J]. 人民长江, 2009, 40(16): 49-52. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE200916021.htm

    Mao B Y, Xu M, Tang W C, et al. Study on the interaction between groundwater and environmental rock and soil in subway construction[J]. Yangtze River, 2009, 40(16): 49-52(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE200916021.htm
    [35]
    周健, 屠洪权, 缪俊发. 地下水位与环境岩土工程[M]. 上海: 同济大学出版社, 1995.

    Zhou J, Tu H Q, Miu J F. Groundwater level and environmental geotechnical engineering[M]. Shanghai: Tongji University Press, 1995(in Chinese).
    [36]
    滕延京. 建筑地基基础设计规范理解与应用[M]. 北京: 中国建筑工业出版社, 2004.

    Teng Y J. Understanding and application of building foundation design code[M]. Beijing: China Architecture and Architecture Press, 2004(in Chinese).
    [37]
    周健, 屠洪权. 地下水位上升与粘性土地基承载力[J]. 岩土力学, 1994(2): 62-69. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX402.007.htm

    Zhou J, Tu H Q. Groundwater level rise and bearing capacity of cohesive soil foundation[J]. Rock and Soil Mechanics, 1994(2): 62-69(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX402.007.htm
    [38]
    赵瑞, 许模, 张强, 等. 成都地铁7号线地下水壅高引起的环境地质问题定量化研究[J]. 城市轨道交通研究, 2016, 19(9): 80-86. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201609022.htm

    Zhao R, Xu M, Zhang Q, et al. Quantitative research on the geo-environment problems caused by rising water level during the construction of Chengdu metro line 7[J]. Urban Mass Transit, 2016, 19(9): 80-86(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201609022.htm
    [39]
    薛禹群, 吴吉春. 地下水动力学[M]. 第3版. 北京: 地质出版社, 2010.

    Xue Y Q, Wu J C. Groundwater dynamics[M]. Third Edition. Beijing: Geology Press, 2010(in Chinese).
    [40]
    张常光, 单冶鹏, 高本贤. 考虑挡墙位移的土压力数学拟合新方法研究[J]. 岩石力学与工程学报, 2021, 40(10): 2124-2135. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202110016.htm

    Zhang C G, Shan Y P, Gao B X. A new mathematical fitting formulation of earth pressure considering the displacement of retaining walls[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(10): 2124-2135(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202110016.htm
    [41]
    Naghadeh R A, Toker N K. Exponential equation for predicting shear trength envelope of unsaturated soils[J]. International Journal of Geomechanics, 2019, 19(7): 04019061.
    [42]
    邹立芝. 关于储水系数的概念[J]. 长春地质学院学报, 1982, 4(3): 123-124. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ198203013.htm

    Zou L Z. On the concept of water storage coefficient[J]. Journal of Changchun University of Earth Sciences, 1982, 4(3): 123-124(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ198203013.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(308) PDF Downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return