Citation: | Tang Yating, Tan Jie, Li Changdong, Li Bingchen, Zhou Wenjuan. Preliminary study on the initiation mechanism of hydrodynamic-driven bedding rock landslides based on physical model tests[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 137-148. doi: 10.19509/j.cnki.dzkq.2022.0202 |
Hydrodynamic-driven bedding rock landslides are the focus of research in the field of landslide geological hazards due to their large number, frequent disasters, and excessive harm. However, the understanding of the initiation mechanism of landslides is still insufficient, and the accurate prediction of landslides still faces great challenges. Because of this, this paper takes moderate-dip angle bedding rock landslides with weak interlayers as the research object and conducts a series of landslide model tests under the action of hydrodynamics by constructing an ideal single-layer landslide physical model. On this basis, the macroscopic deformation evolution process of the landslide and the erosion degradation characteristics of the slide zone soil is analyzed in depth. The results show that the failure of bedding rock landslides is associated with the slip surface roughness and dip angle and can go through four stages: the initial deformation stage, uniform deformation stage, accelerated deformation stage, and failure stage.The seepage erosion in the sliding zone causes the loss of aggregates, which reduces the shear strength and causes the slope to slide. Simultaneously, the compression-shear action and the deformation of the overlying slope also adversely affect erosion strength.Based on the variation law of soil cohesion in the sliding zone with hydraulic gradient and erosion time, a seepage-driven evolution model of soil cohesion in the sliding zone is proposed, which can describe the degradation process of soil cohesion in the sliding zone well. The existence of sliding surface roughness not only significantly affects the deterioration law of the sliding zone, but also changes the failure modes of different regions of the sliding zone. By considering the influence of the roughness on the failure modes of different areas of the sliding zone, the multi-effect correlation analysis of dynamic water is carried out, and the mechanical model of the landslide is established, which realizes the effective evaluation of the dynamic stability of the landslide. The research achievements in this study can provide a theoretical reference for predicting and preventing actual hydrodynamic-driven bedding rock landslides.
[1] |
李长冬, 龙晶晶, 姜茜慧, 等. 水库滑坡成因机制研究进展与展望[J]. 地质科技通报, 2020, 39(1): 67-77. doi: 10.19509/j.cnki.dzkq.2020.0108
Li C D, Long J J, Jiang X H, et al. Advance and prospect of formation mechanism for reservoir landslides[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 67-77(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0108
|
[2] |
王志荣, 王念秦. 黄土滑坡研究现状综述[J]. 中国水土保持, 2004(11): 20-22, 50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSB200411007.htm
Wang Z R, Wang N Q. Review of research status of loess landslide[J]. Soil and Water Conservation in China, 2004(11): 20-22, 50(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSB200411007.htm
|
[3] |
程强, 周德培, 封志军. 典型红层软岩软弱夹层剪切蠕变性质研究[J]. 岩石力学与工程学报, 2009, 28(增刊1): 3176-3180. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2009S1090.htm
Cheng Q, Zhou D P, Feng Z J. Study on shear creep properties of soft interlayer in typical red bed soft rock[J]. Journal of Rock Mechanics and Engineering, 2009, 28(S1): 3176-3180(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2009S1090.htm
|
[4] |
Tang H M, Zou Z X, Xiong C R, et al. An evolution model of large consequent bedding rockslides, with particular reference to the Jiweishan rockslide in Southwest China[J]. Engineering Geology, 2015, 186: 17-27. doi: 10.1016/j.enggeo.2014.08.021
|
[5] |
Lian B Q, Peng J B, Wang X G, et al. Moisture content effect on the ring shear characteristics of sliding zone loess at high shearing rates[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(2): 999-1008. doi: 10.1007/s10064-019-01597-w
|
[6] |
冯霄, 王禹, 刘洋, 等. 考虑软弱夹层控滑机制及其空间不确定性的顺层岩质滑坡易发性评价: 万州区铁峰乡应用研究[J]. 地质科技通报, 2022, 41(2): 254-266. doi: 10.19509/j.cnki.dzkq.2022.0049
Feng X, Wang Y, Liu Y, et al. Susceptibility evaluation of bedding rock landslide considering sliding control mechanism of weak interlayer and spatial uncertainty: Application study in Tiefeng Township, Wanzhou District[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 254-266(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0049
|
[7] |
谭淋耘, 黄润秋, 裴向军. 库水位下降诱发的特大型顺层岩质滑坡变形特征与诱发机制[J]. 岩石力学与工程学报, 2021, 40(2): 302-314. doi: 10.13722/j.cnki.jrme.2020.0728
Tan L G, Huang R Q, Pei X J. Deformation characteristics and inducing mechanism of super-large bedding rock landslide induced by reservoir water level decline[J]. Journal of Rock Mechanics and Engineering, 2021, 40(2): 302-314(in Chinese with English abstract). doi: 10.13722/j.cnki.jrme.2020.0728
|
[8] |
Wang J G, Schweizer D, Liu Q B, et al. Three-dimensional landslide evolution model at the Yangtze River[J]. Engineering Geology, 2021, 292(1): 106275.
|
[9] |
Pinyol N M, Alonso E E, Corominas J, et al. Canelles landslide: Modelling rapid drawdown and fast potential sliding[J]. Landslides, 2012, 9(1): 33-51. doi: 10.1007/s10346-011-0264-x
|
[10] |
林锋, 黄润秋. 滑带土强度对水的敏感性三轴试验研究[C]//佚名. 第七届全国工程地质大会论文集. 北京: 科学出版社, 2004: 124-129.
Lin F, Huang R Q. Deformation characteristics and inducing mechanism of super-large bedding rock landslide induced by reservoir water level decline[C]//Anon. Proceedings of the 7th National Engineering Geology Congress. Beijing: Science Press, 2004: 124-129(in Chinese).
|
[11] |
汪斌, 唐辉明, 朱杰兵, 等. 考虑流固耦合作用的库岸滑坡变形失稳机制[J]. 岩石力学与工程学报, 2007, 26(增刊2): 4484-4489. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S2133.htm
Wang B, Tang H M, Zhu J B, et al. Deformation and failure mechanisms of reservoir landslide considering fluid-solid coupling effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S2): 4484-4489(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S2133.htm
|
[12] |
周春梅, 赵子鹏, 鲁阳. 含水量对滑带土强度变形参数及滑坡稳定性的影响[J]. 防灾减灾工程学报, 2016, 36(2): 213-219. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201602009.htm
Zhou C M, Zhao Z P, Lu Y. Effect of water content on strength deformation parameters of sliding soil and landslide stability[J]. Journal of Disaster Prevention and Mitigation Engineering, 2016, 36(2): 213-219(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201602009.htm
|
[13] |
范志强, 唐辉明, 谭钦文, 等. 滑带土环剪试验及其对水库滑坡临滑强度的启示[J]. 岩土工程学报, 2019, 41(9): 1698-1706. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909016.htm
Fang Z Q, Tang H M, Tan Q W, et al. Ring shear test of sliding zone soil and its enlightenment to the strength of reservoir landslide[J]. Journal of Rock Mechanics and Engineering, 2019, 41(9): 1698-1706(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909016.htm
|
[14] |
张倬元, 王士天, 王兰生. 工程地质分析原理[M]. 北京: 地质出版社, 1994.
Zhang Z Y, Wang S T, Wang L S. Principle of engineering geology analysis[M]. Beijing: Geological Publishing House, 1994(in Chinese).
|
[15] |
Hoek E, Bray J W. Rock slope engineering[M]. London: Institution of Mining and Metallurgy, 1977.
|
[16] |
Qin S Q, Jiao J J, Wang S J, et al. A nonlinear catastrophe model of instability of planar-slip slope and chaotic dynamical mechanisms of its evolutionary process[J]. International Journal of Solids and Structures, 2001, 38(44/45): 8093-8109.
|
[17] |
邹宗兴, 唐辉明, 熊承仁, 等. 大型顺层岩质滑坡渐进破坏地质力学模型与稳定性分析[J]. 岩石力学与工程学报, 2012, 31(11): 2222-2231. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201211009.htm
Zou Z X, Tang H M, Xiong C R, et al. Geomechanical model and stability analysis of progressive failure of large bedding rock landslide[J]. Journal of Rock Mechanics and Engineering, 2012, 31(11): 2222-2231(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201211009.htm
|
[18] |
亓星, 许强, 郑光, 等. 降雨诱发顺层岩质及土质滑坡动态预警力学模型[J]. 灾害学, 2015, 30(3): 38-42. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU201503008.htm
Qi X, Xu Q, Zheng G, et al. Dynamic warning mechanics model of bedding rock and soil landslides induced by rainfall[J]. Disaster, 2015, 30(3): 38-42(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU201503008.htm
|
[19] |
杜岩, 谢谟文, 吴志祥, 等. 平推式滑坡成因机制及其稳定性评价[J]. 岩石力学与工程学报, 2019, 38(增刊1): 2871-2880. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1028.htm
Du Y, Xie M W, Wu Z X, et al. Genesis mechanism and stability evaluation of horizontal landslide[J]. Journal of Rock Mechanics and Engineering, 2019, 38(S1): 2871-2880(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1028.htm
|
[20] |
杨登芳, 胡新丽, 徐楚, 等. 基于物理模型试验的多层滑带滑坡变形演化特征[J]. 地质科技通报, 2022, 41(2): 300-308. doi: 10.19509/j.cnki.dzkq.2021.0069
Yang D F, Hu X L, Xu C, et al. Deformation evolution characteristics of multi-layer sliding zone landslide based on physical model test[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 300-308(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0069
|
[21] |
李龙起, 罗书学, 王运超, 等. 不同降雨条件下顺层边坡力学响应模型试验研究[J]. 岩石力学与工程学报, 2014, 33(4): 755-762. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201404013.htm
Li L Q, Luo S X, Wang Y C, et al. Experimental study on mechanical response model of bedding slope under different rainfall conditions[J]. Journal of Rock Mechanics and Engineering, 2014, 33(4): 755-762(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201404013.htm
|
[22] |
胡修文, 唐辉明, 刘佑荣. 三峡库区赵树岭滑坡稳定性物理模拟试验研究[J]. 岩石力学与工程学报, 2005, 24(12): 2089-2095. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200512019.htm
Hu X W, Tang H M, Liu Y R. Physical model studies on stability of Zhaoshuling landslide in area of Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(12): 2089-2095(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200512019.htm
|
[23] |
Hu X, Zhou C, Xu C, et al. Model tests of the response of landslide-stabilizing piles to piles with different stiffness[J]. Landslides, 2019, 16: 2187-2200.
|
[24] |
Miao F, Wu Y, Li L, et al. Centrifuge model test on the retrogressive landslide subjected to reservoir water level fluctuation[J]. Engineering Geology, 2018, 245: 169-179.
|
[25] |
李江, 许强, 王森, 等. 川东红层地区降雨入渗模式与岩质滑坡成因机制研究[J]. 岩石力学与工程学报, 2016, 35(增刊2): 4053-4062. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S2066.htm
Li J, Xu Q, Wang S, et al. Research on rainfall infitration models of slopes and formation mechanism of rock landslide in red stratum in the east of Sichuan Province[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S2): 4053-4062(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S2066.htm
|
[26] |
Yu H B, Li C D, Zhou J Q, et al. Recent rainfall and excavation-induced bedding rockslide occurring on 22 October 2018 along the Jian-En Expressway, Hubei, China[J]. Landslides, 2020, 17(2): 2619-2629.
|
[27] |
曹玲, 罗先启, 程圣国. 千将坪滑坡物理模型试验相似材料研究[J]. 三峡大学学报: 自然科学版, 2007, 29(1): 37-39, 45. https://www.cnki.com.cn/Article/CJFDTOTAL-WHYC200701008.htm
Cao L, Luo X Q, Cheng S G. Study on similar materials for physical model test of Qianjiangping landslide[J]. Journal of China Three Gorges University: Natural Science, 2007, 29(1): 37-39, 45(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WHYC200701008.htm
|
[28] |
Patton F D. Multiple modes of shear failure in rock[C]//Anon. Proceeding of the1st Congress of International Society of Rock Mechanics. [S. l. ]: OnePetro, 1966.
|
[29] |
Okura Y, Kitahara H, Sammori T. Fluidization in dry landslides[J]. Engineering Geology, 2000, 56(3): 347-360.
|
[30] |
国家发展和改革委员会. 水电水利工程粗粒土试验规程: DL/T5356-2006[S]. 北京: 中国电力出版社, 2007.
National Development and Reform Commission. Specification for coarse-grained soil test in hydroelectric engineering: DL/T5356-2006[S]. Beijing: China Electric Power Press, 2007(in Chinese).
|