Citation: | Feng Yuehua, Luo Xiaojuan, Li Junliang, Cao Zehua, Yao Wenmin, Song Chengbin. Physical model tests on the interaction of h-type stabilizing piles and landslides in bedrock with upper hard and lower weak strata[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 242-252. doi: 10.19509/j.cnki.dzkq.2022.0229 |
Combined stabilizing piles are an effective measure to reinforce large-scale landslides with complex strata. However, the reinforcement mechanism of h-type stabilizing piles in composite strata, such as strata with upper hard and lower weak bedrock, still needs to be studied in depth. Based on a set of self-developed physical devices for landslide-h-type stabilizing piles in bedrock with upper hard and lower weak strata, monitoring of stress and strain, laser range finder, high speed camera, and particle image velocimetry (PIV) techniques were adopted to study the internal forces and displacement of h-type stabilizing piles in landslides bedrock with upper hard and lower weak strata and the deformation characteristics of landslides, through which the interaction mechanism between h-type anti-sliding piles and landslides were revealed. The results showed that under the loading at the tope of the landslide, the h-type stabilizing pile reinforced landslide exhibited progressive failure characterized by four stages of creep, constant-speed deformation, accelerated deformation, and failure. Influenced by the beam, the displacement of the pile head and front and rear piles is small, but the piles have the maximum strain near the sliding mass. The bending moment of the rear piles showed an "S" type distribution curve, while that of the front piles showed a triangular distribution curve, and the maximum negative bending moment occurred at a depth of 20 cm below the beam. With the increase in the volume content of the hard stratum (
[1] |
刘伟. 我国地质灾害调查统计与分析[J]. 采矿技术, 2021, 21(5): 100-103. doi: 10.3969/j.issn.1671-2900.2021.05.029
Liu W. Statistics and analysis of geological hazard surveys in China[J]. Mining Technology, 2021, 21(5): 100-103(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2900.2021.05.029
|
[2] |
Ito T, Matsui T. Methods to estimate lateral force acting on stabilizing piles[J]. Soils and Foundations, 1975, 15(4): 43-59. doi: 10.3208/sandf1972.15.4_43
|
[3] |
常强. 双排桩治理边坡的数值模拟研究[J]. 黑龙江水利科技, 2022, 50(4): 37-39, 179. https://www.cnki.com.cn/Article/CJFDTOTAL-HSKJ202204011.htm
Chang Q. Numerical simulation of slope treatment by double row piles[J]. Heilongjiang Water Science and Technology, 2022, 50(4): 37-39, 179(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HSKJ202204011.htm
|
[4] |
李云凤. 非极限状态双排桩支护结构内力变形情况分析[J]. 兰州工业学院学报, 2022, 29(2): 25-30. https://www.cnki.com.cn/Article/CJFDTOTAL-LZGD202202005.htm
Li Y F. Analysis of internal force deformation of non-limit state double row pile retaining structure[J]. Journal of Lanzhou Institute of Technology, 2022, 29(2): 25-30(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-LZGD202202005.htm
|
[5] |
闫玉平, 肖世国. 双排抗滑桩后侧推力分布物理模型试验[J]. 中国地质灾害与防治学报, 2022, 33(2): 79-87. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202202010.htm
Yan Y P, Xiao S G. Physical model test on landslide thrust distribution on double-row stabilizing piles[J]. Chinese Journal of Geological Hazards and Prevention, 2022, 33(2): 79-87(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202202010.htm
|
[6] |
张建文, 付正道. 双排桩加固滑坡桥基模型试验与数值模拟研究[J]. 高速铁路技术, 2019, 10(3): 30-36. https://www.cnki.com.cn/Article/CJFDTOTAL-GSTL201903007.htm
Zhang J W, Fu Z D. Model test and numerical simulation of bridge foundation with front and rear anti-slide piles in landslide section[J]. High-speed Railway Technology, 2019, 10(3): 30-36(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GSTL201903007.htm
|
[7] |
王秀丽, 于光明, 陈美合. 边坡品字型抗滑桩加固效果监测分析[J]. 兰州理工大学学报, 2016, 42(3): 121-127. doi: 10.3969/j.issn.1673-5196.2016.03.025
Wang X L, Yu G M, Chen M H. Monitoring and analysis of reinforcement effect of slope with pyramid-disposed anti-slide piles[J]. Journal of Lanzhou University of Technology, 2016, 42(3): 121-127(in Chinese with English abstract). doi: 10.3969/j.issn.1673-5196.2016.03.025
|
[8] |
金兆鑫, 袁维红, 胡建琴, 等. 品字型抗滑桩工作性能的影响因素及优化设计[J]. 兰州石化职业技术学院学报, 2017, 17(3): 36-39. doi: 10.3969/j.issn.1671-4067.2017.03.012
Jin Z X, Yuan W H, Hu J Q, et al. Influential factors and optimizing design for triangle anti slide piles working performance[J]. Journal of Lanzhou Institute of Petrochemical Technology, 2017, 17(3): 36-39(in Chinese with English abstract). doi: 10.3969/j.issn.1671-4067.2017.03.012
|
[9] |
任永忠, 朱彦鹏. "品"字型抗滑桩有限元计算方法及工程应用[J]. 工程勘察, 2015, 43(4): 32-37. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201504007.htm
Ren Y Z, Zhu Y P. Finite element calculation method and engineering application of the three piles of facing each other[J]. Engineering Surveys, 2015, 43(4): 32-37(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201504007.htm
|
[10] |
Wang Z H, Zhou J. Three-dimensional numerical simulation and earth pressure analysis on double-row piles with consideration of spatial effects[J]. Journal of Zhejiang University: Science A(Applied Physics & Engineering), 2011, 12(10): 758-770.
|
[11] |
于航, 邢皓枫. h型抗滑桩结构内力及土压力分布研究[J]. 低温建筑技术, 2020, 42(5): 96-100. doi: 10.13905/j.cnki.dwjz.2020.05.024
Yu H, Xing H F. Internal force and earth pressure distribution of h-type anti-slide pile structure[J]. Cryogenic Building Technology, 2020, 42(5): 96-100(in Chinese with English abstract). doi: 10.13905/j.cnki.dwjz.2020.05.024
|
[12] |
王羽, 赵波. h型抗滑桩结构机理与工程数值分析研究[J]. 公路工程, 2015, 40(6): 5-9. doi: 10.3969/j.issn.1674-0610.2015.06.002
Wang Y, Zhao B. The structural mechanism and numerical simulation of h-type anti-sliding pile[J]. Road Works, 2015, 40(6): 5-9(in Chinese with English abstract). doi: 10.3969/j.issn.1674-0610.2015.06.002
|
[13] |
王继晟, 熊传祥. h型抗滑桩工作性状有限元分析[J]. 土工基础, 2014, 28(1): 53-56. https://www.cnki.com.cn/Article/CJFDTOTAL-TGJC201401017.htm
Wang J S, Xiong C X. Finite element analysis of h-type piles for landslide mitigations[J]. Geotechnical Foundations, 2014, 28(1): 53-56(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TGJC201401017.htm
|
[14] |
Liu X R, Kou M M, Feng H, et al. Experimental and numerical studies on the deformation response and retaining mechanism of h-type anti-sliding piles in clay landslide[J]. Environmental Earth Sciences, 2018, 77: 163. doi: 10.1007/s12665-018-7360-3
|
[15] |
Ding Y, Wang P, Yu S. A new method for deformation monitoring on H-pile in SMW based on BOTDA[J]. Measurement, 2015, 70: 156-168. doi: 10.1016/j.measurement.2015.02.027
|
[16] |
欧孝夺, 唐迎春, 崔伟, 等. h型抗滑桩模型试验及数值模拟[J]. 岩石力学与工程学报, 2012, 31(9): 1936-1943. doi: 10.3969/j.issn.1000-6915.2012.09.026
Ou X D, Tang Y C, Cui W, et al. Model test and numerical simulation of h-shaped anti-sliding pile[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(9): 1936-1943(in Chinese with English abstract). doi: 10.3969/j.issn.1000-6915.2012.09.026
|
[17] |
Li C D, Wu J J, Tang H M, et al. Model testing of the response of stabilizing piles in landslides with upper hard and lower weak bedrock[J]. Engineering Geology, 2016, 204: 65-76. doi: 10.1016/j.enggeo.2016.02.002
|
[18] |
Conte E, Troncone A, Vena M. Nonlinear three-dimensional analysis of reinforced concrete piles subjected to horizontal loading[J]. Computers and Geotechnics, 2013, 49: 123-133. doi: 10.1016/j.compgeo.2012.10.013
|
[19] |
姚文敏. 基于水致岩体劣化的三峡库区侏罗系地层水库滑坡抗滑桩嵌固机理及其优化研究[D]. 武汉: 中国地质大学(武汉), 2020.
Yao W M. Embedded mechanism and optimization of stabilizing piles for reservoir landslides in Jurassic strata of Three Gorges Reservoir region based upon water induced deterioration of rock mass[D]. Wuhan: China University of Geosciences(Wuhan), 2020(in Chinese with English abstract).
|
[20] |
雍睿. 三峡库区侏罗系地层推移式滑坡-抗滑桩相互作用研究[D]. 武汉: 中国地质大学(武汉), 2014.
Yong R. Interaction between thrust load caused landslideand antislide pile in Jurassic strata in Three Gorges Reservoir region[D]. Wuhan: China University of Geosciences(Wuhan), 2014(in Chinese with English abstract).
|
[21] |
韩振雷. 基于软硬相间地层条件下抗滑桩受力特性研究[D]. 重庆: 重庆交通大学, 2020.
Han Z L. Study on the interaction between anti-slide pile and embedded rock mass under the condition of soft and hard interphase strata[D]. Chongqing: Chongqing Jiaotong University, 2020(in Chinese with English abstract).
|
[22] |
王旋, 胡新丽, 周昌, 等. 基于物理模型试验的滑坡-抗滑桩位移场变化特征[J]. 地质科技通报, 2020, 39(4): 103-108. doi: 10.19509/j.cnki.dzkq.2020.0413
Wang X, Hu X L, Zhou C, et al. Model test on the displacement field characteristics of the landslide stabilizing piles[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 103-108(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0413
|
[23] |
Liu D M, Xu W L, Zhao Y Z. Experimental study of the flow field of a high head model pump turbine based on PIV technique[J]. Journal of Hydrodynamics, 2021, 33(5): 1045-1055. doi: 10.1007/s42241-021-0092-y
|
[24] |
Meng W, Xu L, Zhenya L, et al. Application of PIV technique in model test of frost heave of unsaturated soil[J]. Journal of Cold Regions Engineering, 2020, 34(3): 04020014-04020014. doi: 10.1061/(ASCE)CR.1943-5495.0000216
|
[25] |
杨登芳, 胡新丽, 徐楚, 等. 基于物理模型试验的多层滑带滑坡变形演化特征[J]. 地质科技通报, 2022, 41(2): 300-308. doi: 10.19509/j.cnki.dzkq.2021.0069
Yang D F, Hu X L, Xu C, et al. Deformation and evolution characteristics of landslides with multiple sliding zones based on physical model test[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 300-308(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0069
|
[26] |
中国地质灾害防治工程行业协会. 抗滑桩治理工程设计规范(试行): T/CAGHP003-2018[S]. 武汉: 中国地质大学出版社, 2018.
Chinese Association of Geological Hazard Prevention. Design specification for anti-sliding piles of improvement engineering: T/CAGHP003-2019[S]. Wuhan: China University of Geosciences Press, 2018(in Chinese).
|
[27] |
Xiong S, Li C D, Yao W M, et al. Physical model tests and numerical modeling of stabilizing mechanism of portal double-row piles in landslides with interbedded weak and hard bedrock[J]. Bulletin of Engineering Geology and the Environment, 2022, 81: 101.
|
[28] |
赵海南. h型抗滑桩受力特性的试验研究[D]. 西安: 长安大学, 2020.
Zhao H N. Experimental study on the stress characteristics of h-type anti-slide pile[D]. Xi'an: Chang'an University, 2020(in Chinese with English abstract).
|