Citation: | Luo Xiaojuan, Kou Huanjia, Zhu Guoqiang, Song Chengbin, Miao Yupeng. Effect of combined anti-slide piles with circular section to reinforce the slope containing the fault crushed zone[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 253-261. doi: 10.19509/j.cnki.dzkq.2022.0239 |
With the continuous development of highway construction in mountainous areas in China, an increasing number of highway slopes encounter fault crushed zones in complex geological structures. It is urgent to strengthen slopes with anti-slide pile structures. However, the traditional manual digging pile construction mode has several disadvantages such as high risk and low efficiency. In contrast, the combined anti-slide pile with circular section shows great advantages of high construction efficiency, safety and convenience. Therefore, it is of practical significance to explore its reinforcement effect on slopes with fault crushed zones. In this paper, five physical models of different thicknesses of broken zones and combined anti-slide piles with circular section are designed by using a home-made slope physical test system. The loading is applied on the slope top step by step. Pile strain, pile top position and soil pressure behind the pile are monitored during loading. A high-speed camera was used to capture the images of sliding body deformation and damage, which were post-processsed using PIV technology. Experimental research shows that the combined anti-slide pile with circular section can reinforce the slope by limiting the horizontal displacement of the sliding body behind the pile and confining the sliding body between the front and rear piles. The evolution of the sliding body can be divided into three stages: deformation compaction, accelerated deformation and failure slip. The ratio of the soil pressure behind the piles of the front and rear piles is between 1/3 and 1/2. The position of the maximum positive bending moment will move down after fracturing of the fault crushed zone. The thickness of the fault crushed zone affects the reinforcement effect of the combined section anti-slide pile with circular section. With the increase in the fault crushed zone thickness, the horizontal slip rate of the sliding body increases, the pile top displacement increases, and the maximum positive bending moment decreases. The bending moment and pile top displacement calculated by the model test and numerical simulation are in good agreement. The research results can provide a reference for the design of combined anti-slide piles with circular section in slope engineering.
[1] |
覃瀚萱, 桂蕾, 余玉婷, 等. 基于滑坡灾害预警分级的应急处置措施[J]. 地质科技通报, 2021, 40(4): 187-195. doi: 10.19509/j.cnki.dzkq.2021.0412
Qin H X, Gui L, Yu Y T, et al. Emergency measures based on early warning classification of landslide[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 187-195(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0412
|
[2] |
苏爱军, 甘诏文, 宋洪斌, 等. 基于"三段法"的锚拉桩桩身内力计算方法与应用[J]. 地质科技通报, 2020, 39(5): 8-16. doi: 10.19509/j.cnki.dzkq.2020.0502
Su A J, Gan Z W, Song H B, et al. Calculation method and application of internal force of anchor pile based on "three-stage method"[J]. Bulletin of Geological Science and Technology, 2020, 39(5): 8-16 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0502
|
[3] |
Won J, You K, Jeong S, et al. Coupled effects in stability analysis of pile-slope systems[J]. Computers and Geotechnics, 2005, 32(4): 304-315. doi: 10.1016/j.compgeo.2005.02.006
|
[4] |
Cai F, Ugai K. Numerical analysis of the stability of a slope reinforced with piles[J]. Soils and Foundations, 2000, 40(1): 73-84. doi: 10.3208/sandf.40.73
|
[5] |
魏少伟, 隋颜阳, 杨建民. 圆形与矩形截面抗滑桩抗滑性能的模型试验研究[J]. 岩土力学, 2019, 40(3): 951-961. doi: 10.16285/j.rsm.2017.1807
Wei S W, Sui Y Y, Yang J M. Model tests on anti-sliding mechanism of circular and rectangular cross section anti-sliding piles[J]. Rock and Soil Mechanics, 2019, 40(3): 951-961(in Chinese with English abstract). doi: 10.16285/j.rsm.2017.1807
|
[6] |
李恒杨, 戴自航, 卢才金. 圆形与矩形截面门架式抗滑桩性能的数值分析对比[J]. 土工基础, 2016, 30(3): 328-332. https://www.cnki.com.cn/Article/CJFDTOTAL-TGJC201603013.htm
Li H Y, Dai Z H, Lu C J. Numerical comparisons of H shaped anti-landslide caissons with circular and rectangular section[J]. Soil Engineering and Foundation, 2016, 30(3): 328-332(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TGJC201603013.htm
|
[7] |
任永忠, 朱彦鹏, 李海军. 考虑桩土相互作用的"品"字型抗滑桩计算方法[J]. 四川大学学报: 工程科学版, 2015, 47(3): 29-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201503005.htm
Ren Y Z, Zhu Y P, Li H J. Calculation method of the three piles of facing each other in consideration of the pile-soil interaction[J]. Journal of Sichuan University: Engineering Science Edition, 2015, 47(3): 29-36(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201503005.htm
|
[8] |
任永忠, 朱彦鹏. "品"字型抗滑桩有限元计算方法及工程应用[J]. 工程勘察, 2015, 43(4): 32-37. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201504007.htm
Ren Y Z, Zhu Y P. Finite element calculation method and engineering application of the three piles of facing each other[J]. Geotechnical Investigation & Surveying, 2015, 43(4): 32-37(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201504007.htm
|
[9] |
任永忠, 朱彦鹏, 王秀丽, 等. "品"字型抗滑桩在舟曲锁儿头滑坡中的应用[J]. 四川建筑科学研究, 2014, 40(3): 113-116. doi: 10.3969/j.issn.1008-1933.2014.03.030
Ren Y Z, Zhu Y P, Wang X L, et al. Application of the three piles of facing each other anti-sliding piles in Suoertou landslide in Zhouqu[J]. Sichuan Building Science, 2014, 40(3): 113-116(in Chinese with English abstract). doi: 10.3969/j.issn.1008-1933.2014.03.030
|
[10] |
张伟杰. 隧道工程富水断层破碎带注浆加固机理及应用研究[D]. 济南: 山东大学, 2014.
Zhang W J. Mechanism of grouting reinforcement of water-rich fault fractured zone and its application in tunnel engineering[D]. Jinan: Shangdong University, 2014(in Chinese with English abstract).
|
[11] |
Wang Y, Jing H, Su H, et al. Effect of a fault fracture zone on the stability of tunnel-surrounding rock[J]. International Journal of Geomechanics, 2017, 17(6): 04016135. doi: 10.1061/(ASCE)GM.1943-5622.0000837
|
[12] |
Jeon S, Kim J, Seo Y, et al. Effect of a fault and weak plane on the stability of a tunnel in rock: A scaled model test and numerical analysis[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41: 658-663. doi: 10.1016/j.ijrmms.2004.03.115
|
[13] |
Liao Z, Lu H, Carpenter B M. et al. Analysis of faut damage zones by using 3D seismic coherence in Anadarko Basin, Oklahoma[J]. AAPG Bulletin, 2019, 103(8): 1771-1785. doi: 10.1306/1219181413417207
|
[14] |
尹光志, 李小双, 魏作安, 等. 边坡和采场围岩变形破裂响应特征的相似模拟试验研究[J]. 岩石力学与工程学报, 2011, 30(增刊1): 2913-2923. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S1043.htm
Yin G Z, Li X S, Wei Z A, et al. Similar simulation study of deformation and failure response features of slopr and stope rocks[J]. Chinese Journal of Rock Mechanics and Engineering. 2011, 30(S1): 2913-2923(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S1043.htm
|
[15] |
刘宏力, 刘品, 吁燃. 断层破碎带对公路边坡工程的影响分析[J]. 公路交通技术, 2017, 33(2): 19-21. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJT201702005.htm
Liu H L, Liu P, Yu R. Analysis on the influence of fault fracture zone on expressway slope project[J]. Technology of Highway and Transport, 2017, 33(2): 19-21(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJT201702005.htm
|
[16] |
徐则民. 基于失稳机制的岩质路基边坡加固方案优化[J]. 中国公路学报, 2008, 21(6): 7-13. doi: 10.3321/j.issn:1001-7372.2008.06.002
Xu Z M. Optimization of reinforced project of rock slopes based on instability mechanisms[J]. China Journal of Highway and Transport, 2008, 21(6): 7-13(in Chinese with English abstract). doi: 10.3321/j.issn:1001-7372.2008.06.002
|
[17] |
刘泉声, 张伟, 卢兴利, 等. 断层破碎带大断面巷道的安全监控与稳定性分析[J]. 岩石力学与工程学报, 2010, 29(10): 1954-1962. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201010004.htm
Liu Q S, Zhang W, Lu X L, et al. Safety monitoring and stability analysis of large-scale roadway in fault fracture zone[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(10): 1954-1962(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201010004.htm
|
[18] |
景彦君, 张以晨, 周志广. 国内外对活断层的研究综述[J]. 吉林地质, 2009, 28(2): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ200902003.htm
Jing Y J, Zhang Y C, Zhou Z G. Research of active faults at home and abroad[J]. Jilin Geology, 2009, 28(2): 1-3(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ200902003.htm
|
[19] |
唐荣昌, 钱洪. 活断层的地质研究及其在工程安全性评价的意义[J]. 四川地震, 1994(1): 69-70. https://www.cnki.com.cn/Article/CJFDTOTAL-SCHZ401.028.htm
Tang R C, Qian H. Geological study of active fault and its significance in engineering safety evaluation[J]. Earthquake Research in Sichuan, 1994(1): 69-70(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SCHZ401.028.htm
|
[20] |
本刊编辑部. 广东深圳光明新区渣土受纳场"12·20"特别重大滑坡事故调查报告[J]. 中国应急管理, 2016(7): 77-85. https://www.cnki.com.cn/Article/CJFDTOTAL-YIGU201607043.htm
The Editorial Department of China Emergency Management. Investigation report of "12·20" landslide accident in Guangming New District, Shenzhen, Guangdong[J]. China Emergency Management, 2016(7): 77-85(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YIGU201607043.htm
|
[21] |
杨登芳, 胡新丽, 徐楚, 等. 基于物理模型试验的多层滑带滑坡变形演化特征[J]. 地质科技通报, 2022, 41(2): 300-308. doi: 10.19509/j.cnki.dzkq.2021.0069
Yang D F, Hu X L, Xu C, et al. Deformation and evolution characteristics of landslides with multiple sliding zones based on physical model test[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 300-308(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0069
|
[22] |
王凯, 李术才, 张庆松, 等. 流-固耦合模型试验用的新型相似材料研制及应用[J]. 岩土力学, 2016, 37(9): 2521-2533. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201609012.htm
Wang K, Li S C, Zhang Q S, et al. Development and application of new similar materials of surrounding rock for a fluid-solid coupling model test[J]. Rock and Soil Mechanics, 2016, 37(9): 2521-2533(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201609012.htm
|