Citation: | Huang Yu, Yang Rongsen, Han Xiaodong, Fan Jianwei, Ni Chunzhong. Analysis of the spatial variability on a fracture network based on an oriented semivariogram[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 186-193. doi: 10.19509/j.cnki.dzkq.2022.0248 |
Using an oriented semivariogram in geostatistics, this paper studied the spatial variability of the fissure network of Lianhuashan fault and Wuzhishan anticline in Gejiu Gaosong Ore Field. First, the field outcrop fracture network was digitized based on ArcGIS, and the fracture density and intensity were extracted. Then, based on GSLIB, the fracture density and intensity maps were calculated along the azimuth angle of 0-175°, 36 experimental semivariograms were created and Kriging interpolation was carried out, and finally, normalized semivariogram graphs were created to quantify the two-dimensional spatial variability of individual fracture intensity and density. It was indicated that the closer to the fault, the greater the spatial variation of the fracture density and intensity, and the its spatial variability was featured in significant anisotropy. The direction with the smallest spatial variability was parallel and close to the fault, the largest direction was perpendicular and close to the fault, the direction with the smallest spatial variability at the proximal fold was parallel to the axial direction of the fold, and the largest direction was perpendicular to the axial direction of the fold. The spatial variability of the fracture network reflected the different effects of faults and folds on the development of the fracture network and provided a reference for the establishment of a three-dimensional fracture network spatial distribution model in the ore field.
[1] |
Isaaks E H, Srivastava M R. Applied geostatistics[M]. New York: Oxford University Press, 1989.
|
[2] |
Deutsch C. Geostatistical reservoir modeling[M]. New York: Oxford University Press, 2002.
|
[3] |
Stein M L. Local variogram models with negative inverse "range" parameters[J]. Spatial Statistics, 2022, 48: 10063.
|
[4] |
Fouedjio F, Scheidt C, Yang L. A geostatistical implicit modeling framework for uncertainty quantification of 3D geo-domain boundaries: Application to lithological domains from a porphyry copper deposit[J]. Computers and Geosciences, 2021, 157: 104931. doi: 10.1016/j.cageo.2021.104931
|
[5] |
Journel D. GSLIB: Geostatistical software library and users guide[M]. New York: Oxford University Press, 1998.
|
[6] |
Li L, Liu Y H, Liu W, et al. Crack evolution and failure modes of shale containing a pre-existing fissure under compression[J]. ACS Omega, 2021, 6(39): 25461-25475. doi: 10.1021/acsomega.1c03431
|
[7] |
Watkins H, Bond C E, Healy D, et al. Appraisal of fracture sampling methods and a new workflow to characterise heterogeneous fracture networks at outcrop[J]. Journal of Structural Geology, 2015, 72: 67-82. doi: 10.1016/j.jsg.2015.02.001
|
[8] |
Barbier M, Hamon Y, Callot J P, et al. Sedimentary and diagenetic controls on the multiscale fracturing pattern of a carbonate reservoir: The Madison Formation (Sheep Mountain, Wyoming, USA)[J]. Marine and Petroleum Geology, 2012, 29(1): 50-67. doi: 10.1016/j.marpetgeo.2011.08.009
|
[9] |
Mauldon M. Estimating mean fracture trace length and density from observations in convex windows[J]. Rock Mechanics and Rock Engineering, 1998, 31(4): 201-216. doi: 10.1007/s006030050021
|
[10] |
Ni A, Qin L X. Performance evaluation of transcriptomics data normalization for survival risk prediction[J]. Briefings in Bioinformatics, 2021, 22(6): bbab257. doi: 10.1093/bib/bbab257
|
[11] |
倪春中, 刘春学, 张世涛, 等. 基于体视学技术的二维数据模拟三维裂隙网络[J]. 石油与天然气地质, 2014, 35(1): 148-152. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201401020.htm
Ni C Z, Liu C X, Zhang S T, et al. 2D data simulation of 3D fracture network based on stereo technology[J]. Oil and Gas Geology, 2014, 35(1): 148-152(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201401020.htm
|
[12] |
倪春中, 刘春学, 张世涛. 从岩石露头裂隙迹线估算裂隙三维空间方向[J]. 石油与天然气地质, 2013, 34(1): 102-106. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201301015.htm
Ni C Z, Liu C X, Zhang S T, et al. Estimation of three-dimensional spatial orientation of fractures from rock outcrop fracture traces[J]. Oil and Gas Geology, 2013, 34(1): 102-106(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201301015.htm
|
[13] |
薛佩佩, 文章, 梁杏. 地质统计学在含水层参数空间变异研究中的应用进展与发展趋势[J]. 地质科技通报, 2022, 41(1): 209-222. doi: 10.19509/j.cnki.dzkq.2022.0015
Xue P P, Wen Z, Liang X. The application progress and development trend of geostatistics in the study of aquifer parameter spatial variation[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 209-222(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0015
|
[14] |
王恺其, 肖凡. 多点地质统计学的理论、方法、应用及发展现状[J]. 地质科技情报, 2019, 38(6): 256-268. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906031.htm
Wang K Q, Xiao F. Theory, method, application and development status of multi-point geostatistics[J]. Geological Science and Technology Information, 2019, 38(6): 256-268(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906031.htm
|
[15] |
陈麒玉, 刘刚, 何珍文, 等. 面向地质大数据的结构-属性一体化三维地质建模技术现状与展望[J]. 地质科技通报, 2020, 39(4): 51-58. doi: 10.19509/j.cnki.dzkq.2020.0407
Chen Q Y, Liu G, He Z W, et al. Status and prospect of structure-attribute integrated 3D geological modeling technology for geological big data[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 51-58(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0407
|
[16] |
Ilyas A, Kashiwaya K, Koike K. Ni grade distribution in laterite characterized from geostatistics, topography and the paleo-groundwater system in Sorowako, Indonesia[J]. Journal of Geochemical Exploration, 2016, 165: 174-188.
|
[17] |
Hanke J R, Fischer M P, Pollyea R M. Directional semivariogram analysis to identify and rank controls on the spatial variability of fracture networks[J]. Journal of Structural Geology, 2018, 108: 34-51.
|
[18] |
马峰, 曾武林, 陈刚, 等. 地下水封石油洞库深部岩体二维裂隙网络模拟[J]. 地质科技情报, 2011, 30(4): 104-107. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201104017.htm
Ma F, Zeng W L, Chen G, et al. Two-dimensional fracture network simulation of deep rock mass in underground oil-sealed oil caves[J]. Geological Science and Technology Information, 2011, 30(4): 104-107(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201104017.htm
|
[19] |
刘春学, 倪春中, 燕永锋, 等. 利用地质统计学方法模拟岩石裂隙网络的三维空间分布: 以云南个旧高松矿田为例[J]. 地球学报, 2013, 34(3): 347-353. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201303013.htm
Liu C X, Ni C Z, Yan Y F, et al. Using geostatistical methods to simulate the three-dimensional spatial distribution of rock fissure networks: Taking the Gejiu Gaosong ore field in Yunnan as an example[J]. Chinese Journal of Geosciences, 2013, 34(3): 347-353(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201303013.htm
|
[20] |
Liu S F, Wan Z J, Zhang Y, et al. Research on evaluation and control technology of coal pillar stability based on the fracture digitization method[J]. Measurement, 2020, 158: 107713.
|
[21] |
蹇龙, 高建国, 亢亢, 等. 云南会泽铅锌矿床1号矿体Pb-Zn元素三维空间变异函数模拟[J]. 地质科技情报, 2015, 34(1): 154-159. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201501024.htm
Jian L, Gao J G, Kang K, et al. Three-dimensional spatial variation function simulation of Pb-Zn elements in No. 1 ore body of Huize lead-zinc deposit, Yunnan[J]. Geological Science and Technology Information, 2015, 34(1): 154-159(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201501024.htm
|
[22] |
周鹏哲, 高锐, 叶卓. 祁连山中部地壳各向异性研究: 来自远震接收函数的证据[J]. 地学前缘, 2022, 29(4): 154-159. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202204023.htm
Zhou P Z, Gao R, Ye Z. Crustal anisotropy in the central Qilian Mountains: Evidence from teleseismic receiver functions[J]. Geoscience Frontiers, 2022, 29(4): 154-159(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202204023.htm
|
[23] |
黄兵, 贺方舟, 姜恒. 基于双层规划的普通克里金插值方法研究[J]. 系统工程理论与实践, 2020, 40(5): 1317-1325. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL202005017.htm
Huang B, He F Z, Jiang H. Research on ordinary kriging interpolation method based on two-level programming[J]. Systems Engineering Theory and Practice, 2020, 40(5): 1317-1325(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL202005017.htm
|
[24] |
Sen Z. Spatial modeling principles in earth sciences[M]. Berlin: Springer International Publishing, 2016.
|
[25] |
高歆. 基于线性GSI二维半变异函数各向异性结构建模及估计研究: 以DEM数据为例[J]. 地理研究, 2020, 39(11): 2607-2625. https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ202011013.htm
Gao X. Research on anisotropic structure modeling and estimation based on linear GSI two-dimensional semivariogram: Taking DEM data as an example[J]. Geographical Research, 2020, 39(11): 2607-2625(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ202011013.htm
|
[26] |
徐俊龙, 温兴平, 张皓楠, 等. 遥感线性构造中心对称度的尺度效应研究[J]. 地质科技情报, 2019, 38(3): 290-298. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903032.htm
Xu J L, Wen X P, Zhang H N, et al. Research on the scale effect of the centrosymmetry of remote sensing linear structures[J]. Geological Science and Technology Information, 2019, 38(3): 290-298(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903032.htm
|
[27] |
Hanke J R. Quantifying the spatial variability of fractures and fracture network properties[D]. Dekalb: Northern Illinois University, 2015.
|
[28] |
Marrett R, Gale J F, Gómez L A, et al. Correlation analysis of fracture arrangement in space[J]. Journal of Structural Geology, 2018, 108: 16-33.
|
[29] |
王铭鑫, 范超, 高秉博, 等. 融合半变异函数的空间随机森林插值方法[J]. 中国生态农业学报: 中英文, 2022, 30(3): 451-457. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN202203010.htm
Wang M X, Fan C, Gao B B, et al. Spatial random forest interpolation method incorporating semivariograms[J]. Chinese Journal of Ecological Agriculture: Chinese and English, 2022, 30(3): 451-457(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN202203010.htm
|
[30] |
杨阳, 李飒, 孙立强, 等. 半变异函数计算波动范围的方法研究[J]. 武汉大学学报: 工学版, 2021, 54(7): 618-626. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD202107006.htm
Yang Y, Li S, Sun L Q, et al. Research on the method of calculating the fluctuation range by semivariogram[J]. Journal of Wuhan University: Engineering Science Edition, 2021, 54(7): 618-626. (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD202107006.htm
|