Citation: | Lu Yongxing, Chen Jian, Huo Zhitao, Li Yi, Lan Jingzhou, Nie Xiaoli, Yue Lianxiong. Analysis of instability process of the loess landslides under rainfall and excavation actions: A case study of Laomiao landslide at Yangchang Village in Changwu County, Guanzhong area[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 95-104. doi: 10.19509/j.cnki.dzkq.2022.0249 |
Rainfall infiltration and artificial excavation are important factors inducing the loess landslides. To study the deformation process of loess landslides in the Guanzhong area and its influence on stability under the two inducements, the Laomiao landslide in Yangchang Village, Changwu County, Shaanxi Province is taken as the research object.Through field investigation, geological mapping and borehole exploration, the deformation characteristics of the landslide are determined, and the deformation evolution process of the landslide is qualitatively analyzed. Based on the measured daily rainfall within 15 days before the landslide deformation, the process of landslide formation under continuous rainfall after excavation actions at the slope foot was simulated by using finite element software. Based on the strength reduction method, the stability variation law of the landslide is studied. The results show that: ① the special formation structure in the Guanzhong area is the internal cause of landslide deformation, and rainfall is the most important inducing factor; ②the deformation evolution process of the landslide: at first the slope was in a state of creep. After the excavation actions, the anterior edge of the slope became unstable, and then the trailing edge of the slope was drawn downward, resulting in tension cracks. Under the influence of rainfall, rainfall infiltrated along the fissures of the slope, while the shear strength of the rock and soil mass in the central part was reduced, resulting in the sliding interface between the soil layer and red clay layer. Ultimately a deep landslide was induced. ③ After the landslide excavation, the stability coefficient decreased by 0.102, as compared with the initial state. Then, influenced by continuous rainfall, the stability coefficient decreased slowly at an average rate of 0.010/d in the first 10 d, and rapidly decreased to the lowest rate of 0.034/d in 10-13 d, and began to rise after 13 d. The research results are expected to provide effective basis for the prevention and control of such landslides.
[1] |
彭建兵, 王启耀, 庄建琦, 等. 黄土高原滑坡灾害形成动力学机制[J]. 地质力学学报, 2020, 26(5): 714-730. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202005008.htm
Peng J B, Wang Q Y, Zhuang J Q, et al. Dynamic formation mechanism of landslide disaster on the Loess Plateau[J]. Journal of Geomechanics, 2020, 26(5): 714-730 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202005008.htm
|
[2] |
孙萍萍, 张茂省, 程秀娟, 等. 黄土高原地质灾害发生规律[J]. 山地学报, 2019, 37(5): 737-746. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201905011.htm
Sun P P, Zhang M S, Cheng X J, et al. On the regularity of geological hazards on the Loess Plateau in China[J]. Mountain Research, 2019, 37(5): 737-746 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201905011.htm
|
[3] |
Zhang M, Liu J. Controlling factors of loess landslides in western China[J]. Environmental Earth Sciences, 2010, 59(8): 1671-1680. doi: 10.1007/s12665-009-0149-7
|
[4] |
巨玉文, 齐琼, 董震, 等. 山西西部地区黄土地质灾害与降雨的关联性分析[J]. 自然灾害学报, 2016, 25(1): 81-87. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201601013.htm
Ju Y W, Qi Q, Dong Z, et al. Analysis of relevance between loess geological disasters and rainfalls in the westem area of Shanxi Province[J]. Journal of Natural Disasters, 2016, 25(1): 81-87 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201601013.htm
|
[5] |
雷祥义. 陕西关中人为黄土滑坡类型的研究: 人类活动的黄土斜坡地质环境负效应问题[J]. 水文地质工程地质, 1996(3): 36-39, 42. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG603.010.htm
Lei X Y. Research on the types of anthropogenic loess landslides in Guanzhong, Shaanxi: Negative effects of human activities on the geological environment of loess slope[J]. Hydrogeology and Engineering Geology, 1996(3): 36-39, 42 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG603.010.htm
|
[6] |
朱建东, 鄢好, 李绍红, 等. 黄土-泥岩接触面滑坡的两种雨型模型试验[J]. 工程地质学报, 2019, 27(3): 623-631. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201903021.htm
Zhu J D, Yan H, Li S H, et al. Model tests on two rain patterns of loess-mudstone interface landslide[J]. Journal of Engineering Geology, 2019, 27(3): 623-631 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201903021.htm
|
[7] |
曾昌禄, 李荣建, 关晓迪, 等. 不同雨强条件下黄土边坡降雨入渗特性模型试验研究[J]. 岩土工程学报, 2020, 42(增刊1): 111-115. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2020S1022.htm
Zeng C L, Li R J, Guan X D, et al. Model test of rainfall infiltration characteristics of loess slope under different rainfall intensities[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 111-115 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2020S1022.htm
|
[8] |
卢操, 晏鄂川, 张瑜, 等. 隆而作用下青石镇政府后山堆积层滑坡渗流与稳定性[J]. 地质科技通报, 2020, 39(2): 139-147. doi: 10.19509/j.cnki.dzkq.2020.0215
Lu C. Yan E C, Zhang Y, et al. Seepage and stability of the coiluvial landslide on the back hill of Qingshi Town Govern-ment under rainfall[J]. Balletin of Geological Science and Technology, 2020, 39(2): 139-147 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0215
|
[9] |
杜光波, 倪万魁. 降雨条件下黄土斜坡的入渗特征分析[J]. 安全与环境学报, 2017, 17(4): 1387-1391. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201704037.htm
Du G B, Ni W K. Status-in-situ observation and analysis for the loess landslide under the impact of the rainfall[J]. Journal of Safety and Environment, 2017, 17(4): 1387-1391 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201704037.htm
|
[10] |
文海家, 张岩岩, 付红梅, 等. 降雨型滑坡失稳机理及稳定性评价方法研究进展[J]. 中国公路学报, 2018, 31(2): 15-29, 96. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201802003.htm
Wen H J, Zhang Y Y, Fu H M, et al. Instability mechanism and rainfall type landslide stability evaluation method research[J]. China Journal of Highway and Transport, 2018, 31(2): 15-29, 96(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201802003.htm
|
[11] |
周创兵, 李典庆. 暴雨诱发滑坡致灾机理与减灾方法研究进展[J]. 地球科学进展, 2009, 24(5): 477-487. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200905004.htm
Zhou C B, Li D Q. Advances in rainfall induced landslides mechanism and risk mitigation[J]. Advances in Earth Science, 2009, 24 (5): 477-487 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200905004.htm
|
[12] |
高华喜, 殷坤龙. 降雨与滑坡灾害相关性分析及预警预报阀值之探讨[J]. 岩土力学, 2007, 28(5): 1055-1060. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200705040.htm
Gao H X, Yin K L. Discuss on the correla-tions between landslides and rainfall and threshold for landslide early-warning and prediction[J]. Rock and Soil Mechanics, 2007, 28(5): 1055-1060 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200705040.htm
|
[13] |
Tu X B, Kwong A K L, Dai F C, et al. Field monitoring of rainfall infiltration in a loess slope and analysis of failure mechanism of rainfall-induced landslides[J]. Engineering Geology, 2009, 105(1): 134-150.
|
[14] |
Wen B P, Wang S J, Wang E Z, et al. Deformation characteristics of loess landslide along the contact between loess and Neocene red mudstone[J]. Acta Geologica Sinica: English Edition, 2005, 79(1): 139-151.
|
[15] |
Zhou Y F, Tham L G, Yan W M, et al. Laboratory study on soil behavior in loess slope subjected to infiltration[J]. Engineering Geology, 2014, 183: 31-38.
|
[16] |
董时俊. 降雨条件下灵台黄土滑坡变形机理分析[J]. 铁道工程学报, 2014, 31(10): 44-48, 68. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201410009.htm
Dong S J. Deformation mechanism of lingtai loess landslide under rainfall condition[J]. Journal of Railway Engineering Society, 2014, 31(10): 44-48, 68 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201410009.htm
|
[17] |
杨背背, 般坤龙, 梁鑫, 等. 三峡库区麻柳林滑玻变形特征及演化模拟[J]. 地质科技通报, 2020, 39(2): 122-129. doi: 10.19509/j.cnki.dzkq.2020.0213
Yang B B, Yin K L, Liang X, et al. Deformation characteristies and evolution simulation of the Maliulin landslide in the Three Gorges Reservoir area[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 122-129 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0213
|
[18] |
殷坤龙, 汪洋, 唐仲华. 降雨对滑坡的作用机理及动态模拟研究[J]. 地质科技情报, 2002, 21(1): 75-78. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200201019.htm
Yin K L, Wang Y, Tang Z H. Study on the mechanism and dynamic simulation of rainfall on landslide[J]. Geological Science and Technology Information, 2002, 21(1): 75-78 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200201019.htm
|
[19] |
裴向军, 袁广, 张晓超, 等. 坡脚开挖诱发滑坡机理: 以沙井驿滑坡为例[J]. 山地学报, 2017, 35(2): 195-202. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201702009.htm
Pei X J, Yuan G, Zhang X C, et al. Study on the mechanism of the loess landslide triggered by slope toe excavation-for the example of the landslide of Shajingyi[J]. Mountain Research, 2017, 35(2): 195-202 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201702009.htm
|
[20] |
曹春山, 吴树仁, 潘懋, 等. 工程切坡诱发黄土滑坡成因机制研究[J]. 岩土力学, 2016, 37(4): 1049-1060. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201604018.htm
Cao C S, Wu S R, Pan M, et al. Study on genesis mechanism of loess landslide induced by engineering slope cutting[J]. Rock and Soil Mechanics, 2016, 37(4): 1049-1060 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201604018.htm
|
[21] |
彭建兵, 吴迪, 段钊, 等. 典型人类工程活动诱发黄土滑坡灾害特征与致灾机理[J]. 西南交通大学学报, 2016, 51(5): 971-980. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201605021.htm
Peng J B, Wu D, Duan Z, et al. Characteristics and mechanism of loess landslide induced by typical human engineering activities[J]. Journal of Southwest Jiaotong University, 2016, 51(5): 971-980 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201605021.htm
|
[22] |
张永兴, 姜广荣. 考虑滑面变形的楔形体稳定分析方法研究[J]. 重庆交通学院学报, 1995, 14(3): 35-41. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT503.005.htm
Zhang Y X, Jiang G R. Study on stability analysis method of wedge considering sliding surface deformation[J]. Journal of Chongqing Jiaotong University, 1995, 14(3): 35-41(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT503.005.htm
|
[23] |
周应华, 周德培, 张辉, 等. 楔形体破坏模式下红层边坡岩体质量SMR法评价[J]. 工程地质学报, 2005, 13(1): 89-93. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ20050100E.htm
Zhou Y H, Zhou D P, Zhang H, et al. Evaluation of rock mass quality of red bed slope by SMR method under wedge failure mode[J]. Journal of Engineering Geology, 2005, 13(1): 89-93(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ20050100E.htm
|
[24] |
薛强, 张茂省, 毕俊擘, 等. 开挖型黄土边坡剥落侵蚀作用及变形破坏研究[J]. 西北地质, 2019, 52(2): 158-166. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201902020.htm
Xue Q, Zhang M S, Bi J B, et al. Exfoliation erosion and deformation failure of excavated loess slope[J]. Northwest Geology, 2019, 52(2): 158-166 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201902020.htm
|
[25] |
王衍汇, 倪万魁, 李征征, 等. 工程开挖引起的黄土边坡变形破坏机理分析[J]. 西北地质, 2015, 48(4): 210-217. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201504027.htm
Wang Y H, Ni W K, Li Z Z, et al. Analysis on deformation and failure mechanism of loess slope caused by engineering excavation[J]. Northwest Geology, 2015, 48(4): 210-217 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201504027.htm
|
[26] |
贾杰, 裴向军, 谢睿, 等. 延安市阳崖黄土边坡开挖破坏离心模拟试验研究[J]. 工程地质学报, 2016, 24(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201601001.htm
Jia J, Pei X J, Xie R, et al. Centrifugal simulation test on excavation failure of Yangya loess slope in Yan'an City[J]. Journal of Engineering Geology, 2016, 24(1): 1-9 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201601001.htm
|
[27] |
陈春利, 殷跃平, 李同录. 窑洞开挖诱发浅层黄土滑坡的变形机理模拟[J]. 地质通报, 2013, 32(12): 1962-1967. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201312010.htm
Chen C L, Yin Y P, Li T L. Deformation mechanism simulation of shallow loess landslide induced by cave excavation[J]. Geological Bulletin of China, 2013, 32(12): 1962-1967 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201312010.htm
|
[28] |
张子东, 裴向军, 张晓超, 等. 黄土边坡开挖卸荷力学响应与破坏机理研究[J]. 工程地质学报, 2018, 26(3): 684-693. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201803015.htm
Zhang Z D, Pei X J, Zhang X C, et al. Study on mechanical response and failure mechanism of loess slope under excavation unloading[J]. Journal of Engineering Geology, 2018, 26(3): 684-693 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201803015.htm
|
[29] |
吴艳, 白建勤, 张晓萍, 等. 基于日雨量的长武县53年来降雨量及侵蚀力演变趋势分析[J]. 水土保持研究, 2012, 19(4): 38-42. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY201204010.htm
Wu Y, Bai J Q, Zhang X P, et al. Evolution trend of rainfall and erosive force in Changwu County in the past 53 years based on daily rainfall[J]. Research of Soil and Water Conversation, 2012, 19(4): 38-42 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-STBY201204010.htm
|
[30] |
陈杰, 刘文兆, 王文龙, 等. 长武黄土高塬沟壑区降水及侵蚀性降雨特征[J]. 中国水土保持科学, 2009, 7(1): 27-31, 56. https://www.cnki.com.cn/Article/CJFDTOTAL-STBC200901006.htm
Chen J, Liu W Z, Wang W L, et al. Characteristics of precipitation and erosive rainfall in gully region of Changwu Loess Plateau[J]. Science of Soil and Water Conservation, 2009, 7(1): 27-31, 56 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-STBC200901006.htm
|
[31] |
李庶林, 赵睿鸣, 彭府华, 等. 基于强度折减法的高陡边坡滑坡治理稳定性分析[J]. 建筑科学与工程学报, 2020, 37(1): 120-126. https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG202001015.htm
Li S L, Zhao R M, Peng F H, et al. Stability analysis of high and steep slope landslide treatment based on strength reduction method[J]. Chinese Journal of Building Science and Engineering, 2020, 37 (1): 120- 126 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG202001015.htm
|
[32] |
卢永兴, 肖建章, 许冲, 等. 蓄水与施工作用下滑坡变形机制与稳定性分析[J]. 工程地质学报, 2014, 22(3): 386-395. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201403007.htm
Lu Y X, Xiao J Z, Xu C, et al. Deformation mechanism and stability analysis of landslide under impoundment and construction[J]. Journal of Engineering Geology, 2014, 22(3): 386-395 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201403007.htm
|
[33] |
重庆市城乡建设委员会. 建筑边坡工程技术规范: GB50330-2013[S]. 北京: 中国建筑工业出版社, 2013.
Chongqing Urban and Rural Construction Commission. Technical code for construction slope engineering: GB50330-2013[S]. Beijing: China Architecture and Building Press, 2013(in Chinese).
|