Citation: | Xiao Yibiao, Duan Longchen, Li Changping, Kang Jifeng, Li Ao. Study on the rock-breaking process based on a high-voltage electropulse boring damage model[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 323-330. doi: 10.19509/j.cnki.dzkq.tb20210625 |
High-voltage electropulse boring (EPB) is a new drilling method with great potential for drilling and industrialization. The existing high-voltage electropulse boring damage model based on PFC2D does not calibrate the parameters of the rock used in the rock-breaking test, so it is impossible to ensure that the simulated model is consistent with the mechanical properties of the rock in the actual rock-breaking test. The parameters of natural rock were calibrated based on the data results of indoor uniaxial compression and Brazilian splitting tests. Based on the calibrated micro parameters, a geometric model consistent with the size of the high-voltage EPB test was established, and the EPB process was simulated. The simulation results indicated that the shear failure mainly occurred in the process of high-voltage EPB, accompanied by a certain amount of tensile failure. Then, the EPB test was carried out with the high-voltage EPB test system, and an irregular broken hole with a diameter of 60 mm and a depth of 22.5 mm was obtained. The breaking effect was visualized by point cloud software. The results of the EPB rock-breaking test verified the effectiveness of the calibrated parameters. Finally, the influence of the fractures on the rock-breaking effect of high-voltage EPB was studied through the geometric model established with the calibrated parameters. The results showed that the existence of fractures would reduce the energy consumption in the rock-breaking process, and the crushing area tended to develop in the direction of fractures.
[1] |
张辉, 蔡志翔, 姜敞, 等. 深部岩石高效破碎方法研究[J]. 西部探矿工程, 2018, 30(9): 75-79. doi: 10.3969/j.issn.1004-5716.2018.09.027
Zhang H, Cai Z X, Jiang C, et al. Study on efficient crushing method of deep rock[J]. West-China Exploration Engineering, 2018, 30(9): 75-79(in Chinese with English abstract). doi: 10.3969/j.issn.1004-5716.2018.09.027
|
[2] |
闫铁, 杜婕妤, 李玮, 等. 高效破岩前沿钻井技术综述[J]. 石油矿场机械, 2012, 41(1): 50-55. https://www.cnki.com.cn/Article/CJFDTOTAL-SKJX201201013.htm
Yan T, Du J Y, Li W, et al. Synthesizing comment on efficient rock fragmentation method in frontier drilling technology[J]. Oil Field Equipment, 2012, 41(1): 50-55(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKJX201201013.htm
|
[3] |
Hu W, Bao J, Hu B. Trend and progress in global oil and gas exploration[J]. Petroleum Exploration and Development, 2013, 40(4): 439-443. doi: 10.1016/S1876-3804(13)60055-5
|
[4] |
李昌平, 契霍特金V F, 段隆臣. 电脉冲破岩钻进技术研究进展[J]. 地质科技情报, 2018, 37(6): 298-304. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201806038.htm
Li C P, Chikhotkin V F, Duan L C. Research progress of electro pulse boring rock breaking technology[J]. Geological Science and Technology Information, 2018, 37(6): 298-304(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201806038.htm
|
[5] |
Zhu X, Luo Y, Liu W, et al. On the mechanism of high-voltage pulsed fragmentation from electrical breakdown process[J]. Rock Mechanics and Rock Engineering, 2021, 54(9): 4593-4616. doi: 10.1007/s00603-021-02537-5
|
[6] |
Kusaiynov K, Nussupbekov B R, Shuyushbayeva N N, et al. On electric-pulse well drilling and breaking of solids[J]. Technical Physics, 2017, 62(6): 867-870. doi: 10.1134/S1063784217060184
|
[7] |
Schiegg H O, Rødland A, Zhu G, et al. Electro-pulse-boring (EPB): Novel super-deep drilling technology for low cost electricity[J]. Journal of Earth Science, 2015, 26(1): 37-46. doi: 10.1007/s12583-015-0519-x
|
[8] |
Li C, Duan L, Wu L, et al. Experimental and numerical analyses of electro-pulse rock-breaking drilling[J]. Journal of Natural Gas Science and Engineering, 2020, 77: 103263. doi: 10.1016/j.jngse.2020.103263
|
[9] |
Li C, Duan L, Tan S, et al. Influences on high-voltage electro pulse boring in granite[J]. Energies, 2018, 11(9): 2461. doi: 10.3390/en11092461
|
[10] |
陈鹏宇, 孔莹, 余宏明. 岩石单轴压缩PFC2D模型细观参数标定研究[J]. 地下空间与工程学报, 2018, 14(5): 1240-1249. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201805013.htm
Chen P Y, Kong Y, Yu H M. Research on the calibration method of microparameters of a uniaxial compression PFC2D model for rock[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(5): 1240-1249(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201805013.htm
|
[11] |
赵国彦, 戴兵, 马驰. 平行黏结模型中细观参数对宏观特性影响研究[J]. 岩石力学与工程学报, 2012, 31(7): 1491-1498. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201207024.htm
Zhao G Y, Dai B, Ma C. Study of effects of microparameters on macroproperties for parallel bonded model[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(7): 1491-1498(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201207024.htm
|
[12] |
陈鹏宇, 余宏明. 平直节理黏结颗粒材料宏细观参数关系及细观参数的标定[J]. 土木建筑与环境工程, 2016, 38(5): 74-84. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201605010.htm
Chen P Y, Yu H M. Relationship between macroparameters and microparameters of flat-jointed bonded-particle material and calibration of microparameters[J]. Journal of Civil and Environmental Engineering, 2016, 38(5): 74-84(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201605010.htm
|
[13] |
武鑫星, 黄兴, 王俊杰, 等. 考虑岩石细观结构的PFC模型及一种新的标定流程[J]. 河南科学, 2021, 39(2): 266-275. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKX202102014.htm
Wu X X, Huang X, Wang J J, et al. PFC model considering rock microstructure and a new calibration process[J]. Henan Science, 2021, 39(2): 266-275(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HNKX202102014.htm
|
[14] |
Cho N, Martin C D, Sego D C. A clumped particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(7): 997-1010. http://www.sciencedirect.com/science/article/pii/S1365160907000172
|
[15] |
Castro-Filgueira U, Alejano L R, Arzúa J, et al. Sensitivity analysis of the micro-parameters used in a PFC analysis towards the mechanical properties of rocks[J]. Procedia Engineering, 2017, 191: 488-495. http://www.sciencedirect.com/science/article/pii/S1877705817323482/pdf?md5=f503e639aa7eacbddf1e9bb2504a6536&pid=1-s2.0-S1877705817323482-main.pdf&_valck=1
|
[16] |
Li C, Duan L, Tan S, et al. Damage model and numerical experiment of high-voltage electro pulse boring in granite[J]. Energies, 2019, 12(4): 727. http://www.xueshufan.com/publication/2916163010
|
[17] |
Zhu X, Luo Y, Liu W. On the rock-breaking mechanism of plasma channel drilling technology[J]. Journal of Petroleum Science and Engineering, 2020, 194: 107356.
|
[18] |
Cho S H, Cheong S S, Yokota M, et al. The dynamic fracture process in rocks under high-voltage pulse fragmentation[J]. Rock Mechanics & Rock Engineering, 2016, 49(10): 1-13. http://www.onacademic.com/detail/journal_1000039526902110_c4a3.html
|
[19] |
孙婧, 何佩珊, 齐梦菊. 关于颗粒流软件PFC的离散元数值模拟参数标定[J]. 山东工业技术, 2016(10): 42. https://www.cnki.com.cn/Article/CJFDTOTAL-SDGJ201610040.htm
Sun J, He P S, Qi M J. On the calibration of discrete element numerical simulation parameters of particle flow software PFC[J]. Shandong Industrial Technology, 2016(10): 42(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SDGJ201610040.htm
|
[20] |
刘畅, 陈晓雪, 张文, 等. PFC数值模拟中平行黏结细观参数标定过程研究[J]. 价值工程, 2017, 36(26): 204-207. https://www.cnki.com.cn/Article/CJFDTOTAL-JZGC201726086.htm
Liu C, Chen X X, Zhang W, et al. Study on the calibration process of parallel bonding meso-structure parameter in PFC numerical simulation[J]. Value Engineering, 2017, 36(26): 204-207(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JZGC201726086.htm
|
[21] |
Potyondy D O, Cundall P A. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329-1364. http://www.nstl.gov.cn/paper_detail.html?id=b8cf93b3df102aa14c559af2499d44c2
|
[22] |
何理, 谢先启, 韩传伟, 等. 基于地震波频谱分析与线性叠加的电子雷管延时优选[J]. 金属矿山, 2021(11): 41-48. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202111007.htm
He L, Xie X Q, Han C W, et al. Delay time interval optimization of electronic detonator based on spectrum analysis and linear superposition of seismic wave[J]. Metal Mine, 2021(11): 41-48(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202111007.htm
|
[23] |
He M, Jiang J, Huang G, et al. Disintegration of rocks based on magnetically isolated high voltage discharge[J]. Review of Scientific Instruments, 2013, 84(2): 61-70. http://www.onacademic.com/detail/journal_1000035857317810_068b.html
|
[24] |
官东林, 文国军, 王玉丹, 等. 基于线激光扫描的岩石激光钻孔的三维重建和可视化[J]. 地质科技通报, 2021, 40(3): 173-183. doi: 10.19509/j.cnki.dzkq.2021.0310
Guan D L, Wen G J, Wang Y D, et al. 3D reconstruction and visualization for laser drilling hole on rock based on line laser scanning[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 173-183(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0310
|