Volume 42 Issue 3
May  2023
Turn off MathJax
Article Contents
Xiong Jian, Tang Junfang, Zhou Xue, Liu Xiangjun, Liang Lixi. Surface wettability of oxygen-containing functional group-modified graphite and its effect on gas-water distribution[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 93-101. doi: 10.19509/j.cnki.dzkq.tb20210633
Citation: Xiong Jian, Tang Junfang, Zhou Xue, Liu Xiangjun, Liang Lixi. Surface wettability of oxygen-containing functional group-modified graphite and its effect on gas-water distribution[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 93-101. doi: 10.19509/j.cnki.dzkq.tb20210633

Surface wettability of oxygen-containing functional group-modified graphite and its effect on gas-water distribution

doi: 10.19509/j.cnki.dzkq.tb20210633
  • Received Date: 22 Oct 2021
  • Wettability is one of the important physical properties of reservoir rock surfaces, and it is a key factor affecting capillary force, relative permeability, bound water saturation and fluid micro-distribution. Based on the molecular simulation method, this paper made a study of the wetting behavior of a graphite surface (organic surface) modified by the oxygen-containing functional groups and the distribution characteristics of the methane-water system in organic slit pores. The results showed that the interaction energy between the water molecules and the surface decreased and the wetting contact angle of the organic matter surface increased with the increase in the oxygen-containing functional groups; with the increase in the temperature, the interaction energy between the organic matter surface and the water molecules increased, and the wetting contact angle decreased; in the graphite slit pore model with symmetrical C/O ratio, water molecules were symmetrically distributed near the wall of oxygen-containing functionalized graphite, and with the decreasing in the C/O ratio, the relative concentration of water molecules increased and the diffusion coefficient decreased, while methane molecules were clustered in the center of the pore. In the graphite slit pore model with asymmetric C/O ratio, the water molecules were asymmetrically distributed near the wall of the oxygenated functionalized graphite, while the methane molecules were clustered in the center of the pore, where the side with a low C/O ratio had strong hydrophilicity on the wall and a high relative concentration of water molecules, while the side with a high C/O ratio had strong hydrophobicity on the wall and a low relative concentration of water molecules. The research findings were extremely significant to make a study of the influences of shale reservoir characteristics.

     

  • loading
  • [1]
    史璨, 林伯韬. 页岩储层压裂裂缝扩展规律及影响因素研究探讨[J]. 石油科学通报, 2021, 6(1): 92-113. doi: 10.3969/j.issn.2096-1693.2021.01.008

    Shi C, Lin B T. Principles and influencing factors for shale formations[J]. Petroleum Science Bulletin, 2021, 6(1): 92-113 (in Chinese with English abstract). doi: 10.3969/j.issn.2096-1693.2021.01.008
    [2]
    陈林, 陈孝红, 张保民, 等. 鄂西宜昌地区五峰组-龙马溪组页岩储层特征及其脆性评价[J]. 地质科技通报, 2020, 39(2): 54-61. doi: 10.19509/j.cnki.dzkq.2020.0206

    Chen L, Chen X H, Zhang B M, et al. Reservoir characteristics and brittleness evaluation of Wufeng Formation-Longmaxi Formation shale in Yichang area, western Hubei Province[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 54-61 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0206
    [3]
    解经宇, 陆洪智, 陈磊, 等. 龙马溪组层状页岩微观非均质性及力学各向异性特征[J]. 地质科技通报, 2021, 40(3): 67-77. doi: 10.19509/j.cnki.dzkq.2021.0302

    Xie J Y, Lu H Z, Chen L, et al. Micro scopic heterogeneity and mechanical anisotropy of the laminated shale in Longmaxi Formation[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 67-77 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0302
    [4]
    李灿星, 刘冬冬, 肖磊, 等. 松辽盆地白垩系陆相页岩孔隙演化过程研究[J]. 石油科学通报, 2021, 6(2): 181-195. doi: 10.3969/j.issn.2096-1693.2021.02.015

    Li C X, Liu D D, Xiao L, et al. Research into pore evolution in Cretaceous continental shales in the Songliao Basin[J]. Petroleum Science Bulletin, 2021, 6(2): 181-195 (in Chinese with English abstract). doi: 10.3969/j.issn.2096-1693.2021.02.015
    [5]
    张福, 黄艺, 蓝宝锋, 等. 正安地区五峰组-龙马溪组页岩储层特征及控制因素[J]. 地质科技通报, 2021, 40(1): 49-56. doi: 10.19509/j.cnki.dzkq.2021.0016

    Zhang F, Huang Y, Lan B F, et al. Characteristics and controlling factors of shale reservoir in Wufeng Formation-Longmaxi Formation of the Zheng'an area[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 49-56 (in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0016
    [6]
    Odusina E O, Sondergeld C H, Rai C S. NMR study of shale wettability[C]//Anon. Canadian unconventional resources conference. [S. l. ]: Society of Petroleum Engineers, 2011.
    [7]
    Josh M, Esteban L, Delle Piane C, et al. Laboratory characterisation of shale properties[J]. Journal of Petroleum Science and Engineering, 2012, 88: 107-124. http://doc.paperpass.com/foreign/rgArti2012381185.html
    [8]
    Borysenko A, Clennell B, Sedev R, et al. Experimental investigations of the wettability of clays and shales[J]. Journal of Geophysical Research: Solid Earth, 2009, 114(B7): 1-11. doi: 10.1029/2008JB005928/abstract
    [9]
    Liang L, Luo D, Liu X, et al. Experimental study on the wettability and adsorption characteristics of Longmaxi Formation shale in the Sichuan Basin, China[J]. Journal of Natural Gas Science and Engineering, 2016, 33: 1107-1118. doi: 10.1016/j.jngse.2016.05.024
    [10]
    Wang L, Fu Y, Li J, et al. Experimental study on the wettability of Longmaxi gas shale from Jiaoshiba gas field, Sichuan Basin, China[J]. Journal of Petroleum Science and Engineering, 2017, 151: 488-495. doi: 10.1016/j.petrol.2017.01.036
    [11]
    刘向君, 熊健, 梁利喜, 等. 川南地区龙马溪组页岩润湿性分析及影响讨论[J]. 天然气地球科学, 2014, 25(10): 1644-1652. doi: 10.11764/j.issn.1672-1926.2014.10.1644

    Liu X J, Xiong J, Liang L X, et al. Analysis of the wettability of Longmaxi Formation shale in the south region of Sichuan Basin and its influence[J]. Natural Gas Geoscience, 2014, 25(10): 1644-1652 (in Chinese with English abstract). doi: 10.11764/j.issn.1672-1926.2014.10.1644
    [12]
    Hautman J, Klein M L. Microscopic wetting phenomena[J]. Physical Review Letters, 1991, 67(13): 1763. doi: 10.1103/PhysRevLett.67.1763
    [13]
    Chai J, Liu S, Yang X. Molecular dynamics simulation of wetting on modified amorphous silica surface[J]. Applied Surface Science, 2009, 255(22): 9078-9084. doi: 10.1016/j.apsusc.2009.06.109
    [14]
    王甜, 王宝和. 纳米水滴在光滑壁面上润湿行为的分子动力学模拟[J]. 河南化工, 2015, 32(1): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-HNHU201501009.htm

    Wang T, Wang B H. Molecular dynamics simulation of wetting behavior of water nano-droplets on smooth surfaces[J]. Henan Chemical Industry, 2015, 32(1): 26-31 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HNHU201501009.htm
    [15]
    焦红岩, 董明哲, 刘仲伟, 等. 水环境下甲烷在不同润湿性石英表面吸附行为的分子动力学模拟[J]. 中国石油大学学报: 自然科学版, 2014, 38(5): 178-183. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201405027.htm

    Jiao H Y, Dong M Z, Liu Z W, et al. Molecular dynamics simulation of methane adsorption with presence of water on different wettability quartz surface[J]. Journal of China University of Petroleum: Edition of Natural Science, 2014, 38(5): 178-183 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201405027.htm
    [16]
    汪周华, 赵建飞, 白银, 等. 不同润湿性修饰石英吸附甲烷的模拟研究[J]. 西南石油大学学报: 自然科学版, 2019, 41(6): 28-34. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201906006.htm

    Wang Z H, Zhao J F, Bai Y, et al. Simulation of methane adsorption of quartz with different wettability[J]. Journal of Southwest Petroleum University: Science & Technology Edition, 2019, 41(6): 28-34 (in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201906006.htm
    [17]
    Abramov A, Keshavarz A, Iglauer S. Wettability of fully hydroxylated and alkylated (01)α-quartz surface in carbon dioxide atmosphere[J]. The Journal of Physical Chemistry C, 2019, 123(14): 9027-9040.
    [18]
    Hu Y, Devegowda D, Sigal R. A microscopic characterization of wettability in shale kerogen with varying maturity levels[J]. Journal of Natural Gas Science and Engineering, 2016, 33: 1078-1086. http://www.onacademic.com/detail/journal_1000039023057510_fcca.html
    [19]
    Xiong J, Liu X, Liang L, et al. Adsorption of methane in organic-rich shale nanopores: An experimental and molecular simulation study[J]. Fuel, 2017, 200: 299-315. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0016236117303599&originContentFamily=serial&_origin=article&_ts=1494085956&md5=76281ff2f1877f319f8fa89f11599b6a
    [20]
    Xiong J, Liu X, Liang L, et al. Methane adsorption on carbon models of the organic matter of organic-rich shales[J]. Energy & Fuels, 2017, 31(2): 1489-1501.
    [21]
    Behar F, Vandenbroucke M. Chemical modelling of kerogens[J]. Organic Geochemistry, 1987, 11(1): 15-24. http://www.sciencedirect.com/science/article/pii/0146638087900477
    [22]
    Vandenbroucke M, Largeau C. Kerogen origin, evolution and structure[J]. Organic Geochemistry, 2007, 38(5): 719-833. http://www.sciencedirect.com/science/article/pii/S014663800700006X
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(356) PDF Downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return