Volume 43 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
TANG Tian, BA Suyu, SHI Ruikun, WANG Nan, TIAN Yuan, GU Hanming. Depth wavenumber spectral decomposition based on orthogonal matching pursuit and its application in hydrocarbon reservoir prediction[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 360-370. doi: 10.19509/j.cnki.dzkq.tb20220237
Citation: TANG Tian, BA Suyu, SHI Ruikun, WANG Nan, TIAN Yuan, GU Hanming. Depth wavenumber spectral decomposition based on orthogonal matching pursuit and its application in hydrocarbon reservoir prediction[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 360-370. doi: 10.19509/j.cnki.dzkq.tb20220237

Depth wavenumber spectral decomposition based on orthogonal matching pursuit and its application in hydrocarbon reservoir prediction

doi: 10.19509/j.cnki.dzkq.tb20220237
More Information
  • Author Bio:

    TANG Tian, E-mail: t553471525@126.com

  • Corresponding author: GU Hanming, E-mail: hmgu@cug.edu.cn
  • Received Date: 25 May 2022
  • Accepted Date: 06 Jul 2022
  • Rev Recd Date: 05 Jul 2022
  • Objective

    Conventional seismic attribute analysis in the time domain is based on the conversion from prestack depth migration data to time domain data, which will cause the loss of effective high-frequency information. To make full use of the advantage of the high imaging accuracy of depth domain data, it is necessary to carry out the attribute analysis of depth domain data. Because the wavenumber in the depthdomain is related to the frequency and wave velocity, obtaining a high-resolution depth wavenumber spectrum is the key to seismic attribute analysis in the depth domain.

    Methods

    In this paper, based on the spectral decomposition method of sparse inversion, an overcomplete wavelet dictionary in the depth domain is established, and the orthogonal matching pursuit algorithm is used to improve the computational resolution of the depth wavenumber spectrum. By calculating the attributes of the depth wavenumber spectrum of the theoretical model and comparing them with the attributes of the time-frequency spectrum, the variation characteristics of the depth wavenumber spectrum of the hydrocarbon reservoir are analyzed. Through the application of depth wavenumber spectral attribute analysis of field data, the practicability of using the depth wavenumber spectrum to predict oil and gas reservoirs is verified.

    Results

    The results show that the depth wavenumber spectral decomposition method based on the orthogonal matching pursuit algorithm has high resolution and can be used as a high-precision method for hydrocarbon reservoir prediction in the depth domain.

    Conclusion

    The application of field data shows that the low-wavenumber shadow appears below the oil and gas reservoir in the deep wavenumber spectrum, which can be used as a sign to indicate the existence of oil and gas reservoirs in the depth domain. The depth wavenumber spectral decomposition based on orthogonal matching pursuit can effectively identify the low-wavenumber shadow anomaly, which enables to predict the oil and gas reservoirs by use of the depth domain seismic data.

     

  • The authors declare that no competing interests exist.
  • loading
  • [1]
    胡中平, 孔祥宁, 潘宏勋, 等. 叠前深度域地震属性技术研究及展望[J]. 石油物探, 2004, 43(增刊1): 28-30.

    HU Z P, KONG X N, PAN H X, et al. Research and prospect of seismic attribute technology in prestack depth domain[J]. Geophysical Prospecting for Petroleum, 2004, 43(S1): 28-30. (in Chinese with English abstract)
    [2]
    何惺华. 深度域地震资料若干问题初探[J]. 石油物探, 2004, 43(4): 353-358, 5.

    HE X H. Discussion on seismic data of depth domain[J]. Geophysical Prospecting for Petroleum, 2004, 43(4): 353-358, 5. (in Chinese with English abstract)
    [3]
    孙建国. 深度域处理解释技术[J]. 勘探地球物理进展, 2005, 40(6): 381-392, 9.

    SUN J G. Data processing and interpretation techniques in depth domain[J]. Progress in Exploration Geophysics, 2005, 40(6): 381-392, 9. (in Chinese with English abstract)
    [4]
    郝晓红, 晏玉环. 深度域地震资料解释探讨[J]. 海洋石油, 2014, 34(2): 20-24.

    HAO X H, YAN Y H. Seismic data interpretation after PSDM in depth domain[J]. Offshore Oil, 2014, 34(2): 20-24. (in Chinese with English abstract)
    [5]
    周赏, 汪关妹, 张万福, 等. 深度域地震资料解释技术应用及效果[J]. 石油地球物理勘探, 2017, 52(增刊1): 92-98, 8-9.

    ZHOU S, WANG G M, ZHANG W F, et al. Depth-domain seismic data interpretation[J]. Oil Geophysical Prospecting, 2017, 52(S1): 92-98, 8-9. (in Chinese with English abstract)
    [6]
    梁佳莉, 孙成禹. 地震资料时-深域属性差异分析[C]//佚名. 2020年中国地球科学联合学术年会论文集(十九). 重庆: 北京伯通电子出版社, 2020: 146-148.

    LIANG J L, SUN C Y. Analysis of time-depth domain attribute difference of seismic data[C]//Anon. Proceedings of 2020 China Geosciences Federation Annual Conference. Chongqing: Beijing Botong Electronic Publishing House, 2020: 146-148. (in Chinese with English abstract)
    [7]
    HE Z H, XIONG X J, BIAN L E. Numerical simulation of seismic low-frequency shadows and its application[J]. Applied Geophysics, 2008, 5(4): 301-306. doi: 10.1007/s11770-008-0040-4
    [8]
    MALLAT S, ZHANG Z. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415. doi: 10.1109/78.258082
    [9]
    CHAKRABORTY A, OKAYA D. Frequency-time decomposition of seismic data using wavelet-based methods[J]. Geophysics, 1995, 60(6): 1906-1916. doi: 10.1190/1.1443922
    [10]
    CASTAGNA J P, SUN S J, ROBERT W S. Instantaneous spectral analysis: Detection of low-frequency shadows associated with hydrocarbons[J]. The Leading Edge, 2003, 22(2): 120-127. doi: 10.1190/1.1559038
    [11]
    LIU J, WU Y, HAN D, et al. Time-frequency decomposition based on Ricker wavelet[C]//Anon. Expanded Abstracts of 74th Annual International SEG Mtg. [S. l. ]: [s. n. ], 2004.
    [12]
    LIU J, MARFURT K J. Matching pursuit decomposition using Morlet wavelets[C]//Anon. Expanded Abstracts of 75th Annual International SEG Mtg. [S. l. ]: [s. n. ], 2005.
    [13]
    WANG Y. Seismic time-frequency spectral decomposition by matching pursuit[J]. Geophysics, 2007, 72(1): 13-20.
    [14]
    张繁昌, 刘汉卿, 张立强, 等. 复数道动态匹配追踪算法的改进[J]. 石油地球物理勘探, 2016, 51(1): 183-189.

    ZHANG F C, LIU H Q, ZHANG L Q, et al. Improved complex-trace dynamic matching pursuit algorithm[J]. Oil Geophysical Prospecting, 2016, 51(1): 183-189. (in Chinese with English abstract)
    [15]
    刘霞, 陈晨, 赵玉婷, 等. 基于粒子群快速优化MP算法的多子波分解与重构[J]. 吉林大学学报(地球科学版), 2015, 45(6): 1855-1861.

    LIU X, CHEN C, ZHAO Y T, et al. Multi-wavelet decomposition and reconstruction based on matching pursuit algorithm fast optimized by particle swarm[J]. Journal of Jilin University(Earth Science Edition), 2015, 45(6): 1855-1861. (in Chinese with English abstract)
    [16]
    王珺, 李永庆. 遗传算法和正交时频原子相结合的地震记录快速匹配追踪[J]. 石油地球物理勘探, 2016, 51(5): 881-888, 893, 834.

    WANG J, LI Y Q. Seismic trace fast matching pursuit based on genetic algorithm and orthogonal time-frequency atom[J]. Oil Geophysical Prospecting, 2016, 51(5): 881-888, 893, 834. (in Chinese with English abstract)
    [17]
    LI C H, ZHANG F C. Matching pursuit parallel decomposition of seismic data[J]. Computers and Geosciences, 2017, 104: 54-61. doi: 10.1016/j.cageo.2017.04.005
    [18]
    王聪, 巫南克, 王世锋. GPU并行在匹配追踪算法中的应用[J]. 工程地球物理学报, 2018, 15(5): 567-572.

    WANG C, WU N K, WANG S F. Application of GPU parallel computing to matching pursuit algorithm[J]. Chinese Journal of Engineering Geophysics, 2018, 15(5): 567-572. (in Chinese with English abstract)
    [19]
    邓世广, 王淑艳, 赵文津, 等. 基于OpenMP并行计算的匹配追踪时频分析方法[J]. 石油地球物理勘探, 2018, 53(3): 454-461, 1-2.

    DENG S G, WANG S Y, ZHAO W J, et al. A matching pursuit time-frequency analysis method based on OpenMP parallel computing[J]. Oil Geophysical Prospecting, 2018, 53(3): 454-461, 1-2. (in Chinese with English abstract)
    [20]
    杨午阳, 杨庆, 何欣, 等. 改进的高精度匹配追踪方法研究及应用[J]. 地球物理学报, 2017, 60(7): 2825-2832.

    YANG W Y, YANG Q, HE X, et al. Research and application of improved high precision matching pursuit method[J]. Chinese Journal of Geophysics, 2017, 60(7): 2825-2832. (in Chinese with English abstract)
    [21]
    孙劲松, 陈国雄, 刘天佑. 基于改进Morlet小波的MP算法在地震频谱分析中的应用[J]. 地质科技情报, 2011, 30(5): 119-122.

    SUN J S, CHEN G X, LIU T Y. MP algorithm based on improved Morlet wavelet in the seismic spectrum analysis[J]. Geological Science and Technology Information, 2011, 30(5): 119-122. (in Chinese with English abstract)
    [22]
    刘杰, 张忠涛, 刘道理, 等. 强反射背景下沉积体边界检测及流体识别方法[J]. 石油物探, 2016, 55(1): 142-149.

    LIU J, ZHANG Z T, LIU D L, et al. Sediment boundary identification and fluid detection for the seismic data with strong background reflections[J]. Geophysical Prospecting for Petroleum, 2016, 55(1): 142-149. (in Chinese with English abstract)
    [23]
    李坤, 印兴耀, 宗兆云. 基于匹配追踪谱分解的时频域FAVO流体识别方法[J]. 石油学报, 2016, 37(6): 777-786.

    LI K, YIN X Y, ZONG Z Y. Time frequency-domain FAVO fluid discrimination method based on matching pursuit spectrum decomposition[J]. Acta Petrolei Sinica, 2016, 37(6): 777-786. (in Chinese with English abstract)
    [24]
    杨子川, 高利君, 李海英. 匹配追踪时频分析技术在塔河油田缝洞型储层预测中的应用[J]. 地质科技情报, 2017, 36(3): 293-298.

    YANG Z C, GAO L J, LI H Y. Match pursuit time frequency analysis technology in the prediction of fractured reservoirs in Tahe Oilfield[J]. Geological Science and Technology Information, 2017, 36(3): 293-298. (in Chinese with English abstract)
    [25]
    陈珊, 徐兴友, 罗晓玲, 等. 基于改进匹配追踪算法的时频属性在薄储层沉积微相研究中的应用[J]. 物探与化探, 2018, 42(5): 1006-1012.

    CHEN S, XU X Y, LUO X L, et al. Time-frequency attribute based on modified matching pursuit algorithm and its application to sedimentary microfacies of thin reservoir area[J]. Geophysical and Geochemical Exploration, 2018, 42(5): 1006-1012. (in Chinese with English abstract)
    [26]
    许璐, 吴笑荷, 张明振, 等. 基于局部频率约束的动态匹配追踪强反射识别与分离方法[J]. 石油地球物理勘探, 2019, 54(3): 587-593, 486-487.

    XU L, WU X H, ZHANG M Z, et al. Strong reflection identification and separation based on the local-frequency-constrained dynamic matching pursuit[J]. Oil Geophysical Prospecting, 2019, 54(3): 587-593, 486-487. (in Chinese with English abstract)
    [27]
    杨子鹏, 宋维琪, 刘军, 等. 多道联合约束的匹配追踪强反射轴压制方法[J]. 石油地球物理勘探, 2021, 56(1): 77-85, 7.

    YANG Z P, SONG W Q, LIU J, et al. A method of combining multi-channel signals to suppress the strong reflection through matching pursuit[J]. Oil Geophysical Prospecting, 2021, 56(1): 77-85, 7. (in Chinese with English abstract)
    [28]
    潘辉, 印兴耀, 李坤, 等. 基于经验模态分解字典的自适应匹配追踪谱分解方法及其在油气检测中的应用[J]. 石油地球物理勘探, 2021, 56(5): 1117-1129, 929-930.

    PAN H, YIN X Y, LI K, et al. Spectral decomposition method of adaptive matching pursuit based on empirical mode decomposition dictionary and its application in oil and gas detection[J]. Oil Geophysical Prospecting, 2021, 56(5): 1117-1129, 929-930. (in Chinese with English abstract)
    [29]
    张军华, 王静, 王延光, 等. 基于压缩感知的反射系数域沿层L2范数约束去强屏蔽方法[J]. 石油地球物理勘探, 2022, 57(2): 405-413, 246-247.

    ZHANG J H, WANG J, WANG Y G, et al. A strong shielding removal method of reflection coefficient domain based on compressed sensing with L2 norm constraint along layer[J]. Oil Geophysical Prospecting, 2022, 57(2): 405-413, 246-247. (in Chinese with English abstract)
    [30]
    TROPP J A, GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666. doi: 10.1109/TIT.2007.909108
    [31]
    GU H M, STEWART R, LI Z J, et al. Calculation of relative seismic attenuation from reflection time-frequency differences in carbonate reservoir[C]//Anon. 77th Annual International Meeting, SEG, Expanded Abstracts. [S. l. ]: [s. n. ], 2007: 1495-1498.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(277) PDF Downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return