Volume 43 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
JI Hao, LI Yanjun, LI Yiming, LENG Shuangliang, YANG Ziwen. Research advances on mineralization and types of the alkaline granite-related rare metal and rare earth element deposits[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 23-38. doi: 10.19509/j.cnki.dzkq.tb20220397
Citation: JI Hao, LI Yanjun, LI Yiming, LENG Shuangliang, YANG Ziwen. Research advances on mineralization and types of the alkaline granite-related rare metal and rare earth element deposits[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 23-38. doi: 10.19509/j.cnki.dzkq.tb20220397

Research advances on mineralization and types of the alkaline granite-related rare metal and rare earth element deposits

doi: 10.19509/j.cnki.dzkq.tb20220397
More Information
  • Author Bio:

    JI Hao, E-mail: jihao@cug.edu.cn

  • Corresponding author: LI Yanjun, E-mail: liyj@cug.edu.cn
  • Received Date: 04 Oct 2022
  • Accepted Date: 14 Oct 2022
  • Rev Recd Date: 07 Oct 2022
  • Significance

    Alkaline granites are one of the most important intrusions associated with rare metal and rare earth element mineralization.

    Progress

    Recently, alkaline granite-related rare metal and rare earth element deposits have achieved a number of important advances in classification, sources of ore-forming fluids and materials, and enrichment mechanisms. Alkaline granites are usually enriched in high field strength elements (HFSEs) and rare earth elements (REEs). These deposits can be divided into three types based on the relationships between mafic and oreminerals, i.e., arfvedsonite alkaline granite-related Nb-REE deposits, biotite alkaline granite-related Nb-Sn-rich deposits, and nepheline/aegirine syenite-related Nb-U-REE-rich deposits. Mineralization ages of these deposits are concentrated in the Paleozoic-Cenozoic. The deposits are formed in an extensional setting associated with break-up and convergence of continents and supercontinents. Two stages of ore-forming fluids, early-stage magmatic differentiation and late-stage hydrothermal metasomatism, are recognized for the formation of these deposits. Previous studies indicate that ore-forming fluids exsolved from alkaline magmas are characterized by low temperatures, high salinities and rich fluorine, which can lead to the super high enrichment of HFSEs and REEs in alkaline granites. Incompatible elements in parental magmas can be enriched in exsolved fluids and can lead to the formation of rare metal and rare earth element ores due to F-rich fluid fractional crystallization or hydrothermal alteration in the late magmatic stage. The ore-forming materials were dominantly originated from mantle-derived magmas, crust- and mantle-derived magma mixing, or subducted oceanic crust.

    Conclusions and Prospects

    Hydrothermal metasomatism and magmatic fractional crystallization are two enrichment mechanisms commonly used to interpret the formation of these deposits. However, most of these deposits are formed by a combination of the two mechanisms.

     

  • The authors declare that no competing interests exist.
  • loading
  • [1]
    EBY G N. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis[J]. Lithos, 1990.26(1/2): 115-134.
    [2]
    VASYUKOVA O, WILLIAMS-JONES A E. Partial melting, fractional crystallization, liquid immiscibility and hydrothermal mobilisation: A recipe for the formation of economic A-type granite-hosted HFSE deposits[J]. Lithos, 2020, 356/357: 105300. doi: 10.1016/j.lithos.2019.105300
    [3]
    SARANGUA N, WATANABE Y, ECHIGO T, et al. Chemical characteristics of zircon from Khaldzan Burgedei Peralkaline Complex, western Mongolia[J]. Minerals, 2019, 9(1): 10.
    [4]
    MAHMOUD S A A. El Seboah peralkaline A-type magmatism, South Western Desert, Egypt: Evidences for the HFSE and REE enrichment[J]. Arabian Journal of Geosciences, 2018, 11(12): 290. doi: 10.1007/s12517-018-3555-x
    [5]
    CEGIEłKA M, BAGIńSKI B, MACDONALD R, et al. Ba-Fe titanates in peralkaline granite of the Ilímaussaq Complex, South Greenland[J]. Acta Geologica Polonica, 2022, 72(1): 1-8.
    [6]
    DOSTAL J, SHELLNUTT J G. Origin of peralkaline granites of the Jurassic Bokan Mountain Complex(southeastern Alaska) hosting rare metal mineralization[J]. International Geology Review, 2016, 58(1/2): 1-13.
    [7]
    杨武斌, 单强, 赵振华, 等. 巴尔哲地区碱性花岗岩的成岩和成矿作用: 矿化和未矿化岩体的比较[J]. 吉林大学学报(地球科学版), 2011, 41(6): 1689-1704.

    YANG W B, SHAN Q, ZHAO Z H, et al. Petrogenic and metallogenic action of the alkaline granitoids in Baerzhe area: A comparison between mineralized and barren plutons[J]. Journal of Jilin University(Earth Science Edition), 2011, 41(6): 1689-1704. (in Chinese with English abstract)
    [8]
    吴欢欢. 内蒙古赵井沟铌钽矿床成矿机制研究[D]. 北京: 中国地质大学(北京), 2020.

    WU H H. Study on metallogenic mechanism of the Zhaojinggou Nb-Ta deposit in North China Craton, Inner Mongolia, China [D]. Beijing: China University of Geosciences(Beijing), 2020. (in Chinese with English abstract)
    [9]
    邬斌, 王汝成, 郭国林, 等. 辽宁赛马碱性岩体层硅铈钛矿化学成分变化及其对碱性岩浆演化的指示意义[J]. 地球科学, 2020, 45(2): 467-478.

    WU B, WANG R C, GUO G L, et al. Chemical composition and alteration assemblages of eudialyte in the Saima alkaline complex, Liaoning Province, and its implication for alkaline magmatic-hydrothermal evolution[J]. Earth Science, 2020, 45(2): 467-478. (in Chinese with English abstract)
    [10]
    孙政浩, 秦克章, 毛亚晶, 等. 塔里木北缘波孜果尔碱性(花岗)岩铌-钽-锆-铷-稀土矿床钠铁闪石、霓石特征及意义[J]. 岩石学报, 2021, 37(12): 3687-3716.

    SUN Z H, QIN K Z, MAO Y J, et al. Characteristics and significance of aegirine and arfvedsonite in Boziguoer Nb-Ta-Zr-Rb-REE deposit related to alkaline granite, Xinjiang[J]. Acta Petrologica Sinica, 2021, 37(12): 3687-3711. (in Chinese with English abstract)
    [11]
    MAO W, LI X, WANG G, et al. Petrogenesis of the Yangzhuang Nb-and Ta-rich A-type granite porphyry in West Junggar, Xinjiang, China[J]. Lithos, 2014, 198/199: 172-183. doi: 10.1016/j.lithos.2014.03.032
    [12]
    贾志磊. 甘肃南祁连-北山铌钽铷等稀有金属成矿地质特征与成矿规律的研究[D]. 兰州: 兰州大学, 2016.

    JIA Z L. Geochemical and metallogenetical characteristics of Nb-Ta-Rb deposits, South Qilian-Beishan area, Gansu Province, China[D]. Lanzhou: Lanzhou University, 2016. (in Chinese with English abstract)
    [13]
    刘永超, 李建康, 邹天人, 等. 福建永定大坪花岗斑岩体的铌钽富集特征研究[J]. 矿床地质, 2017, 36(1): 143-157.

    LIU Y C, LI J K, ZOU T R, et al. Enrichment characteristics of Nb and Ta of Daping granite porphyry in Yongding, Fujian Province[J]. Mineral Deposits, 2017, 36(1): 143-157. (in Chinese with English abstract)
    [14]
    EBY G N. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications[J]. Geology(Boulder), 1992, 20(7): 641-644.
    [15]
    COLLINS W J, BEAMS S D, WHITE A J R, et al. Nature and origin of A-type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy and Petrology, 1982, 80(2): 189-200. doi: 10.1007/BF00374895
    [16]
    朱笑青, 王中刚, 王元龙, 等. 新疆后造山碱性花岗岩的地质特征[J]. 岩石学报, 2006, 12: 2945-2956.

    ZHU X Q, WANG Z G, WANG Y L, et al. Geological characteristics of the post-orogenic alkaline in Xinjiang[J]. Acta Petrologica Sinica, 2006, 12: 2945-2956. (in Chinese with English abstract)
    [17]
    ESTRADE G, BÉZIAT, D, SALVI S, et al. Unusual evolution of silica-under-and-oversaturated alkaline rocks in the Cenozoic Ambohimirahavavy Complex(Madagascar): Mineralogical and geochemical evidence[J]. Lithos, 2014, 206/207: 361-383. doi: 10.1016/j.lithos.2014.08.008
    [18]
    TURNER S P, FODEN J D, MORRISON R S, et al. Derivation of some A-type magmas by fractionation of basaltic magma: An example from the Padthaway Ridge, South Australia[J]. Lithos, 1992, 28(2): 151-179. doi: 10.1016/0024-4937(92)90029-X
    [19]
    SKJERLIE K, JOHNSTON A D. Vapor-absent melting at 10 kbar of a biotite-and amphibole-bearing tonalitic geneiss: Implications for the generation of A-type granites[J]. Geology, 1992, 20: 263-266.
    [20]
    HALAMA R, MARKS M, BRÜGMANN G, et al. Crustal contamination of mafic magmas: Evidence from a petrological, geochemical and Sr-Nd-Os-O isotopic study of the Proterozoic Isortoq dike swarm, South Greenland[J]. Lithos, 2004, 74(3/4): 199-232.
    [21]
    YANG J, SUN J F, ZHANG M, et al. Petrogenesis of silica-saturated and silica-undersaturated syenites in the northern North China Craton related to post-collisional and intraplate extension[J]. Chemical Geology, 2012, 328: 149-167. doi: 10.1016/j.chemgeo.2011.09.011
    [22]
    MEEN J K, EGGLER D H, AYERS J C. Experimental evidence for very low solubility of rare-earth elements in CO2-rich fluids at mantle conditions[J]. Nature, 1989, 340(6231): 301-303. doi: 10.1038/340301a0
    [23]
    YANG W B, NIU H C, HOLLINGS P, et al. The role of recycled oceanic crust in the generation of alkaline A-type granites[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(12): 9775-9783. doi: 10.1002/2017JB014921
    [24]
    林德松. 与碱性花岗岩有关的稀有稀土矿床[J]. 矿产与地质, 1994, 8(6): 401-406.

    LIN D S. Rare metal and REE deposits related to alkaline granites[J]. Mineral Resources and Geology, 1994, 8(6): 401-406. (in Chinese with English abstract)
    [25]
    JIANG S Y, SU H M, XIONG Y Q, et al. Spatial-temporal distribution, geological characteristic and ore formation controlling factors of major types of rare metal mineral deposits in China[J]. Acta Geologica Sinica(English Edition), 2020, 94(6): 1757-1773. doi: 10.1111/1755-6724.14595
    [26]
    SIEGEL K, WILLIAMS-JONES A E, VAN HINSBERG V J. The amphiboles of the REE-rich A-type peralkaline Strange Lake pluton: Fingerprints of magma evolution[J]. Lithos, 2017, 288-289: 156-174. doi: 10.1016/j.lithos.2017.07.012
    [27]
    刘敬党, 梁帅, 张艳飞, 等. 加拿大纽芬兰省稀有稀土矿化特征与勘查进展[J]. 地质科技情报, 2015, 34(1): 167-172.

    LIU J D, LIANG S, ZHANG Y F, et al. Mineralization characteristics and prospecting progresses of rare elements in Newfoundland, Canada[J]. Geological Science and Technology Information, 2015, 34(1): 167-172. (in Chinese with English abstract)
    [28]
    MARKS M A W, MARKL G. A global review on agpaitic rocks[J]. Earth-Science Reviews, 2017, 173: 229-258. doi: 10.1016/j.earscirev.2017.06.002
    [29]
    邬斌, 王汝成, 刘晓东, 等. 辽宁赛马碱性岩体异性石化学成分特征及其蚀变组合对碱性岩浆-热液演化的指示意义[J]. 岩石学报, 2018, 34(6): 1741-1757.

    WU B, WANG R C, LIU X D, et al. Chemical composition and alteration assemblages of dudialyte in the Saima alkaline complex, Liaoning Province, and its implication for alkline magmatic-hyrothermal evolution[J]. Acta Petrologica Sinica, 2018, 34(6): 1741-1757. (in Chinese with English abstract)
    [30]
    BORST A M, FRIIS H, ANDERSEN T, et al. Zirconosilicates in the kakortokites of the Ilímaussaq Complex, South Greenland: Implications for fluid evolution and high-field-strength and rare-earth element mineralization in agpaitic systems[J]. Mineralogical Magazine, 2016, 80(1): 5-30. doi: 10.1180/minmag.2016.080.046
    [31]
    张治中, 张博文, 冯京, 等. 东准噶尔卡拉麦里晚古生代岩石圈"阶段式"拆沉机制: 来自A型花岗岩带同位素年代学及地球化学的证据[J]. 新疆地质, 2022, 40(1): 12-19.

    ZHANG Z Z, ZHANG B W, FENG J, et al. "Stage type" delamination mechanism of Late Paleozoic lithosphere in Kalamaili, East Junggar: Evidence from isotopic chronology and geochemistry of A type granite belt[J]. Xinjiang Geology, 2022, 40(1): 12-19. (in Chinese with English abstract)
    [32]
    吴欢欢, 王涛, 张招崇, 等. 新疆拜城县波孜果尔碱性花岗岩体中角闪石与黑云母地球化学特征及其对成岩成矿的记录[J]. 岩石矿物学杂志, 2019, 38(2): 173-190.

    WU H H, WANG T, ZHANG Z C, et al. Chemical characteristics of amphibole and biotite from the Boziguo'er alkaline granitic pluton in Baicheng County, Xinjiang, and their implications for petrogenesis and mineralization[J]. Acta Petrologica et Mineralogica, 2019, 38(2): 173-190. (in Chinese with English abstract)
    [33]
    GIREI M B, LI H, ALGEO T J, et al. Petrogenesis of A-type granites associated with Sn-Nb-Zn mineralization in Ririwai complex, north-Central Nigeria: Constraints from whole-rock Sm-Nd and zircon Lu Hf isotope systematics[J]. Lithos, 2019, 340/341: 49-70. doi: 10.1016/j.lithos.2019.05.003
    [34]
    DUMAHSKA-SŁOWIK M, POWOLNY T, SIKORSKA-JAWOROWSKA M, et al. Mineralogical and geochemical constraints on the origin and evolution of albitites from Dmytrivka at the Oktiabrski Complex, Southeast Ukraine[J]. Lithos, 2019, 334-335: 231-244. doi: 10.1016/j.lithos.2019.03.024
    [35]
    陈金勇, 范洪海, 王生云, 等. 内蒙古巴尔哲地区碱性花岗岩地球化学特征、年代学及地质意义[J]. 地质论评, 2019.65(增刊1): 45-46.

    CHEN J Y, FAN H H, WANG S Y, et al. Geochemical characteristics and chronology of alkaligranites in Baerzhe area, Inner Mongolia, and geological significance[J]. Geological Review, 2019.65(S1): 45-46. (in Chinese with English abstract)
    [36]
    HOSHINO M, WATANABE Y, MURAKAMI H, et al. Formationprocess of zircon associated with REE-fluorocarbonate and niobium minerals in the Nechalacho REE deposit, Thor Lake, Canada[J]. Resource Geology, 2013, 63(1): 1-26. doi: 10.1111/j.1751-3928.2012.00207.x
    [37]
    MILLER R R, HEAMAN L M, BIRKETT T C, et al. U-Pb zircon age of the Strange Lake peralkaline complex: Implications for Mesoproterozoic peralkaline magmatism in north-central Labrador[J]. Precambrian Research, 1997, 81(1/2): 67-82.
    [38]
    KRUMREI T V, VILLA I M, MARKS M A W, et al. A40/Ar39Ar and U/Pb isotopic study of the Ilímaussaq Complex, South Greenland: Implications for the 40K decay constant and for the duration of magmatic activity in a peralkaline complex[J]. Chemical Geology, 2006, 227(3/4): 258-273.
    [39]
    KOVALENKO V I, YARMOLYUK V V, KOVACH V P, et al. Variations in the Nd isotopic ratios and canonical ratios of concentrations of incompatible elements as an indication of mixing sources of alkali granitoids and basites in the Khaldzan-Buregtei Massif and the Khaldzan-Buregtei rare-metal deposit in western Mongolia[J]. Petrology, 2009, 17(3): 227-252. doi: 10.1134/S0869591109030035
    [40]
    DOSTAL J, KONTAK D J, KARL S M, et al. The Early Jurassic Bokan Mountain peralkaline granitic complex(southeastern Alaska): Geochemistry, petrogenesis and rare-metal mineralization[J]. Lithos, 2014, 202/203: 395-412. doi: 10.1016/j.lithos.2014.06.005
    [41]
    ESTRADE G, SALVI S, BÉZIAT D, et al. REE and HFSE mineralization in peralkaline granites of the Ambohimirahavavy alkaline complex, Ampasindava Peninsula, Madagascar[J]. Journal of African Earth Sciences, 2014, 94: 141-155. doi: 10.1016/j.jafrearsci.2013.06.008
    [42]
    SIEGEL K, WILLIAMS-JONES A E, STEVENSON R, et al. A Nd-and O-isotope study of the REE-rich peralkaline Strange Lake granite: Implications for Mesoproterozoic A-type magmatism in the Core Zone(NE-Canada) [J]. Contributions to Mineralogy and Petrology, 2017, 172(7): 1-23.
    [43]
    刘楚雄, 许保良, 邹天人, 等. 塔里木北缘及邻区海西期碱性岩岩石化学特征及其大地构造意义[J]. 新疆地质, 2004: 22(1): 43-49. doi: 10.3969/j.issn.1000-8845.2004.01.008

    LIU C X, XU B L, ZOU T R, et al. Petrochemistry and tectonic significance of Hercynian alkaline rocks along the northern margin of the Tarim Platform and its adjacent area[J]. Xinjiang Geology, 2004, 22(1): 43-49. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-8845.2004.01.008
    [44]
    谢明材, 苏本勋, 王忠梅, 等. 塔里木北缘与碱性岩有关的稀有-稀土矿床成矿作用研究[J]. 地质科学, 2020, 55(2): 420-438.

    XIE M C, SU B X, WANG Z M, et al. Research on the characteristics of rare and rare earth deposits associated with alkaline rocks in the northern margin of Tarim, Xinjiang[J]. Chinese Jounal of Geology, 2020, 55(2): 420-438. (in Chinese with English abstract)
    [45]
    邱检生, 胡建, 李真, 等. 大别-苏鲁造山带变质岩原岩组合与闽浙沿海晚中生代岩浆岩组合的对比: 对扬子板块北东缘新元古构造属性的启示[J]. 高校地质学报, 2010, 16(4): 413-425.

    QIU J S, HU J, LI Z, et al. Comparison of protolith assemblages of metamorphic rocks in the Dabie-Sulu orogen and the Late Mesozoic magmatic rock associations in the coastal region of Zhejiang and Fujian provinces: Implications for the Neoproterozoic tectonic setting of northeastern Yangtze Block[J]. Geological Journal of China Universities, 2010, 16(4): 413-425. . (in Chinese with English abstract)
    [46]
    宋建强. 辽东凤城碱性岩地球化学、年代学及其地质意义[D]. 北京: 中国地质大学(北京), 2017.

    SONG J Q. Geochemistry and chronology of alkaline rocks in Fengcheng, Liaodong and their geological implications[D]. Beijing: China University of Geosciences(Beijing), 2017. (in Chinese with English abstract)
    [47]
    ZHANG Z, QIN J, LAI S, et al. Origin of Late Permian syenite and gabbro from the Panxi rift, SW China: The fractionation process of mafic magma in the inner zone of the Emeishan mantle plume[J]. Lithos, 2019, 346-347: 105160. doi: 10.1016/j.lithos.2019.105160
    [48]
    丘志力, 梁冬云, 王艳芬, 等. 巴尔哲碱性花岗岩锆石稀土微量元素、U-Pb年龄及其成岩成矿指示[J]. 岩石学报, 2014, 30(6): 1757-1768.

    QIU Z L, LIANG D Y, WANG Y F, et al. Zircon REE, trace element characteristics and U-Pb chronology in the Baerzhe alkaline granite: Implications to the petrological genesis and mineralization[J]. Acta Petrologica Sinica, 2014, 30(6): 1757-1768. (in Chinese with English abstract)
    [49]
    王锦荣, 吕正航, 吕新彪, 等. 福建大坪花岗斑岩型稀有金属矿床铌铁矿LA-ICP-MS U-Pb定年及其地质意义[J]. 矿物岩石地球化学通报, 2020, 39(3): 637-645.

    WANG J R, LÜ Z H, LÜ X B, et al. LA-ICP-MS U-Pb age of columbite from the Daping granite porphyry-type rare metal deposit in Fujian Province and its geological significance[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2020, 39(3): 637-645. (in Chinese with English abstract)
    [50]
    YANG W, NIU H C, LI N B, et al. Enrichment of REE and HFSE during the magmatic-hydrothermal evolution of the Baerzhe alkaline granite, NE China: Implications for rare metal mineralization[J]. Lithos, 2020, 358/359: 105411. doi: 10.1016/j.lithos.2020.105411
    [51]
    ZHANG L, JIANG S Y. Two episodic Nb-Ta mineralization events and genesis of the Zhaojinggou rare-metal deposit, north margin of the North China Craton[J]. Ore Geology Reviews, 2021, 131: 103994. doi: 10.1016/j.oregeorev.2021.103994
    [52]
    朱煜翔. 东秦岭新元古代方城碱性杂岩体的成因及Nb-Ta富集机制[D]. 武汉: 中国地质大学(武汉), 2019.

    ZHU Y X. Petrogenesis and Nb-Ta mineralization of the Neoproterozoic Fangcheng alkaline magmatic complex, East Qinling Orogen[D]. Wuhan: China University of Geosciences(Wuhan), 2019. (in Chinese with English abstract)
    [53]
    HUANG H, WANG T, ZHANG Z, et al. Highly differentiated fluorine-rich, alkaline granitic magma linked to rare metal mineralization: A case study from the Boziguo'er rare metal granitic pluton in South Tianshan Terrane, Xinjiang, NW China[J]. Ore Geology Reviews, 2018, 96: 146-163. doi: 10.1016/j.oregeorev.2018.04.021
    [54]
    柯坤家. 青海阿尔金北段交通社铌钽矿床成因类型、元素赋存状态及区域成矿预测[D]. 武汉: 中国地质大学(武汉). 2018.

    KE K J. Genetic type and occurrence of mineralized elements for Jiaotongshe Nb-Ta deposit in the North Altyn Belt, and regional metallogenic prediction[D]. Wuhan: China University of Geoscience(Wuhan), 2018. (in Chinese with English abstract)
    [55]
    贾志磊. 甘肃南祁连-北山铌钽铷等稀有金属成矿地质特征与成矿规律的研究[D]. 兰州: 兰州大学, 2016.

    JIA Z L. Geochemical and metallogenetical characteristics of Nb-Ta-Rb deposits, South Qilian-Beishan area, Gansu Province, China[D]. Lanzhou: Lanzhou University, 2016. (in Chinese with English abstract)
    [56]
    肖昱, 李顺庭, 任经武, 等. 新疆西南天山哈拉峻地区富碱花岗岩稀有金属含矿性研究: 以巴什苏洪岩体为例[J]. 矿产勘查, 2021, 12(7): 1548-1555. doi: 10.3969/j.issn.1674-7801.2021.07.007

    XIAO Y, LI S T, REN J W, et al. Study on rare metal ore-bearing property of alkali-rich granite in Halajun area of Tianshan Mountains, SW Xinjiang: A case study of Basisuhong rock mass[J]. Mineral Exploration, 2021, 12(7): 1548-1555. (in Chinese with English abstract) doi: 10.3969/j.issn.1674-7801.2021.07.007
    [57]
    钱兵, 高永宝, 李侃, 等. 新疆东昆仑于沟子地区与铁-稀有多金属成矿有关的碱性花岗岩地球化学、年代学及Hf同位素研究[J]. 岩石学报, 2015, 31(9): 2508-2520.

    QIAN B, GAO Y B, LI K, et al. Zircon U-Pb-Hf isotopes and whole rock geochemistry constraints on the petrogenesis of iron-rare metal mineralization related alkaline granitic intrusive rock in Yugouzi area, eastern Kunlun, Xinjiang[J]. Acta Petrologica Sinica, 2015: 31(9): 2508-2520. (in Chinese with English abstract)
    [58]
    ZHU Y X, WANG L X, MA C Q, et al. Titanite as a tracer for Nb mineralization during magmatic and hydrothermal processes: The case of Fangcheng alkaline complex, Central China[J]. Chemical Geology, 2022, 608: 121028. doi: 10.1016/j.chemgeo.2022.121028
    [59]
    NIE X, WANG Z Q, CHEN L, et al. Trachytic magmatism and Nb-rare earth element mineralization in the Pingli area, North Daba Mountain: Insights from geochronology and geochemistry[J]. Geological Journal, 2020, 55(12): 8225-8243. doi: 10.1002/gj.3930
    [60]
    钟军, 范洪海, 陈金勇, 等. 辽宁赛马霓霞正长岩黑云母地球化学特征、40Ar-39Ar年龄及其地质意义[J]. 地球科学, 2020, 45(1): 131-144.

    ZHONG J, FAN H H, CHEN J Y, et al. Geochemistry characteristics and 40Ar-39Ar age of biotite from the Saima aegirine-nepheline syenite and its geological significance[J]. Earth Science, 2020, 45(1): 131-144. . (in Chinese with English abstract)
    [61]
    WU H, HUANG H, ZHANG Z, et al. Geochronology, geochemistry, mineralogy and metallogenic implications of the Zhaojinggou Nb-Ta deposit in the northern margin of the North China Craton, China[J]. Ore Geology Reviews, 2020, 125: 103692. doi: 10.1016/j.oregeorev.2020.103692
    [62]
    LUO W J, ZHANG Z C, HOU T. Geochronology-geochemistry of the Cida bimodal intrusive complex, central Emeishan large igneous province, Southwest China: Petrogenesis and plume-lithosphere interaction[J]. International Geology Review, 2013, 55(1): 88-114. doi: 10.1080/00206814.2012.689128
    [62]
    江小强. 江西黄山铌钽矿床成矿岩体地球化学特征及成因分析[D]. 成都: 成都理工大学, 2020.

    JIANG X Q. Geochemical characteristics and petrogenesis analysis of the metallogenic pluton of the Huangshan Nb-Ta deposit in Jiangxi Province[D] Chengdu: Chengdu University of Technology, 2020. (in Chinese with English abstract)
    [63]
    GOODENOUGH K M, UPTON B G J, ELLAM R M. Geochemical evolution of the Ivigtut granite, South Greenland: A fluorine-rich "A-type" intrusion[J]. Lithos, 2000, 51(3): 205-221. doi: 10.1016/S0024-4937(99)00064-X
    [64]
    DINGWELL D B, HESS K U. Melt viscosities in the system Na-Fe-Si-O-F-Cl: Contrasting effects of F and Cl in alkaline melts[J]. The American Mineralogist, 1998, 83(9/10): 1016-1021.
    [65]
    AIUPPA A, BAKER D R, WEBSTER J D. Halogens in volcanic systems[J]. Chemical Geology, 2009, 263(1/4): 1-18.
    [66]
    ZARAISKY G P, KORZHINSKAYA V, KOTOVA N. Experimental studies of Ta2O5 and columbite-tantalite solubility in fluoride solutions from 300 to 550℃ and 50 to 100 MPa[J]. Mineralogy and Petrology, 2010, 99(3/4): 287-300.
    [67]
    KOHLER J, KONNERUP-MADSEN J, MARKL G. Fluid geochemistry in the Ivigtut cryolite deposit, South Greenland[J]. Lithos, 2008, 103(3/4): 369-392.
    [68]
    SCHMITT A K. Zr-Nb-REE Mineralization in Peralkaline granites from the Amis Complex, Brandberg(Namibia): Evidence for magmatic pre-enrichment from melt inclusions[J]. Economic Geology, 2002, 97(2): 399-413. doi: 10.2113/gsecongeo.97.2.399
    [69]
    TROPPER P, MANNING C, HARLOV D, et al. Experimental determination of CePO4 and YPO4 solubilities in H2O-NaF at 800℃ and 1 GPa: Implications for rare earth element transport in high-grade metamorphic fluids[J]. Geofluids, 2013, 13: 372-380. doi: 10.1111/gfl.12031
    [70]
    佘海东, 范宏瑞, 胡芳芳, 等. 稀土元素在热液中的迁移与沉淀[J]. 岩石学报, 2018, 34(12): 3567-3581.

    SHE H D, FAN H R, HU F F, et al. Migration and precipitation of rare earth elements in the hydrothermal fluids[J]. Acta Petrologica Sinica, 2018, 34(12): 3567-3581. (in Chinese with English abstract)
    [71]
    MIGDISOV A A, WILLIAMS-JONES A E. Hydrothermal transport and deposition of the rare earth elements by fluorine-bearing aqueous liquids[J]. Mineralium Deposita, 2014, 49: 987-997. doi: 10.1007/s00126-014-0554-z
    [72]
    SUN Y, LAI Y, CHEN J, et al. Rare earth and rare metal elements mobility and mineralization during magmatic and fluid evolution in alkaline granite system: Evidence from fluid and melt inclusions in Baerzhe granite, China[J]. Resource Geology, 2013, 63(3): 239-261. doi: 10.1111/rge.12007
    [73]
    SHEARD E R, WILLIAMS-JONES A E, HEILIGMANN M, et al. Controls on the concentration of zirconium, niobium, and the rare earth elements in the Thor Lake rare metal deposit, Northwest Territories, Canada[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 2012, 107(1): 81-104. doi: 10.2113/econgeo.107.1.81
    [74]
    SALVI S, WILLIAMS-JONES A E. The role of hydrothermal processes in the granite-hosted Zr, Y, REE deposit at Strange Lake, Quebec/Labrador: Evidence from fluid inclusions[J]. Geochimica et Cosmochimica Acta, 1990, 54(9): 2403-2418. doi: 10.1016/0016-7037(90)90228-D
    [75]
    VASYUKOVA O V, WILLIAMS-JONES A E. Direct measurement of metal concentrations in fluid inclusions, a tale of hydrothermal alteration and REE ore formation from Strange Lake, Canada[J]. Chemical Geology, 2018, 483: 385-396. doi: 10.1016/j.chemgeo.2018.03.003
    [76]
    MÖLLER V, WILLIAMS-JONES A E. Petrogenesis of the Nechalacho layered suite, Canada: Magmatic evolution of a REE-Nb-rich nepheline syenite intrusion[J]. Journal of Petrology, 2016, 57(2): 229-276. doi: 10.1093/petrology/egw003
    [77]
    VASYUKOVA O V, WILLIAMS-JONES A E, BLAMEY N J F. Fluid evolution in the Strange Lake granitic pluton, Canada: Implications for HFSE mobilisation[J]. Chemical Geology, 2016, 444: 83-100. doi: 10.1016/j.chemgeo.2016.10.009
    [78]
    HUANG H, ZHANG Z, SANTOSH M, et al. Geochronology, geochemistry and metallogenic implications of the Boziguo'er rare metal-bearing peralkaline granitic intrusion in South Tianshan, NW China[J]. Ore Geology Reviews, 2014, 61: 157-174. doi: 10.1016/j.oregeorev.2014.01.011
    [79]
    VINCENT V I, WANG L X, ZHU Y X, et al. Onset of the anorogenic alkaline magmatism in the Nigerian Younger granite province: Constraints from the Daura and Dutse complexes[J]. Lithos, 2022, 410-411: 106561. doi: 10.1016/j.lithos.2021.106561
    [80]
    TIMOFEEV A, WILLIAMS-JONES A E. The origin of niobium and tantalum mineralization in the Nechalacho REE deposit, NWT, Canada[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 2015, 110(7): 1719-1735. doi: 10.2113/econgeo.110.7.1719
    [81]
    GREEN T H, MCDONOUGH W F, ARNDT N T, et al. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system[J]. Chemical Geology, 1995, 120(3/4): 347-359.
    [82]
    LUO W, ZHANG Z C, HOU T, et al. Geochronology-geochemistry of the Cida bimodal intrusive complex, central Emeishan large igneous province, southwest China: Petrogenesis and plume-lithosphere interaction[J]. International Geology Review, 2012, 55(1): 88-114.
    [83]
    RUDNICK R L, GAO S. Composition of the continental crust[C]//Turekian K K, Holland H D. Treatise on geochemistry. London: Elsevier, 2014: 1-51.
    [84]
    IONOV D A, HOFMANN A W. Nb-Ta-rich mantle amphiboles and micas: Implications for subduction-related metasomatic trace element fractionations[J]. Earth and Planetary Science Letters, 1995, 131(3/4): 341-356.
    [85]
    ARVIN M, PAN Y, DARGAHI S, et al. Petrochemistry of the Siah-Kuh granitoid stock southwest of Kerman, Iran: Implications for initiation of Neotethys subduction[J]. Journal of Asian Earth Sciences, 2007, 30(3/4): 474-489.
    [86]
    KOVALENKO V I, YARMOLYUK V V, SAL'NIKOVA E B, et al. Geology, geochronology, and geodynamics of the Khan Bogd alkali granite pluton in southern Mongolia[J]. Geotectonics, 2006, 40(6): 450-466. doi: 10.1134/S0016852106060033
    [87]
    BLAXLAND A B. Rb-Sr isotopic evidence for the age and origin of the Ivigtut granite and associated cryolite body, South Greenland[J]. Economic Geology, 1976, 71: 864-869. doi: 10.2113/gsecongeo.71.5.864
    [88]
    赵元艺, 卢伟, 汪傲, 等. 格陵兰伊犁马萨克铌-钽-铀-稀土矿床研究进展[J]. 地质科技情报, 2013, 32(5): 9-17.

    ZHAO Y Y, LU W, WANG A, et al. Research progress on the Ilimaussaq Nb-Ta-U-REE deposit, Greenland[J]. Geological Science and Technology Information, 2013, 32(5): 9-17. (in Chinese with English abstract)
    [89]
    SJÖQVIST A S L, CORNELL D H, ANDERSEN T, et al. Magmatic age of rare-earth element and zirconium mineralisation at the Norra Kärr alkaline complex, southern Sweden, determined by U-Pb and Lu-Hf isotope analyses of metasomatic zircon and eudialyte[J]. Lithos, 2017, 294/295: 73-86. doi: 10.1016/j.lithos.2017.09.023
    [90]
    VASYUKOVA O, WILLIAMS-JONES A E. Fluoride-silicate melt immiscibility and its role in REE ore formation: Evidence from the Strange Lake rare metal deposit, Quebec-Labrador, Canada[J]. Geochimica et Cosmochimica Acta, 2014, 139: 110-130. doi: 10.1016/j.gca.2014.04.031
    [91]
    冉子龙, 李艳军. 伟晶岩型稀有金属矿床成矿作用研究进展[J]. 地质科技通报, 2021, 40(2): 13-23. doi: 10.19509/j.cnki.dzkq.2021.0018

    RAN Z L, LI Y J. Research advances on rare metal pegmatite deposits[J]. Bulletin of Geological Science and Technology, 2021, 40(2): 13-23. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2021.0018
    [92]
    李艳军, 魏俊浩, 张文胜, 等. 幕阜山复式岩基西北缘新发现微斜长石伟晶岩型铌钽矿化[J]. 地质科技通报, 2021, 40(2): 208-210. doi: 10.19509/j.cnki.dzkq.2021.0219

    LI Y J, WEI J H, ZHANG W S, et al. New discovery of microcline pegmatite-type Nb-Ta mineralization at the northwestern margin of the Mufushan batholith, central Jiangnan orogen[J]. Bulletin of Geological Science and Technology, 2021, 40(2): 208-210. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2021.0219
    [93]
    FINCH A A, MCCREATH J A, REEKIE C D J, et al. From mantle to Motzfeldt: A genetic model for syenite-hosted Ta, Nb-mineralisation[J]. Ore Geology Reviews, 2019, 107: 402-416. doi: 10.1016/j.oregeorev.2019.02.032
    [94]
    ANDREEVA I A. Genesis and mechanisms of formation of rare-metal peralkaline granites of the Khaldzan Buregtey Massif, Mongolia: Evidence from melt inclusions[J]. Petrology, 2016, 24(5): 462-476. doi: 10.1134/S0869591116050027
    [95]
    CUCCINIELLO C, MELLUSO L, LE ROEX A P, et al. From olivine nephelinite, basanite and basalt to peralkaline trachyphonolite and comendite in the Ankaratra volcanic complex, Madagascar: 40Ar/39Ar ages, phase compositions and bulk-rock geochemical and isotopic evolution[J]. Lithos, 2017, 274-275: 363-382. doi: 10.1016/j.lithos.2016.12.026
    [96]
    SALVI S, FONTAN F, MONCHOUX P, et al. Hydrothermal mobilization of high field strength elements in alkaline igneous systems: Evidence from the Tamazeght Complex(Morocco)[J]. Economic Geology, 2000, 95(3): 559-576.
    [97]
    SALVI S, WILLIAMS-JONES A E. Alteration, HFSE mineralisation and hydrocarbon formation in peralkaline igneous systems: Insights from the Strange Lake Pluton, Canada[J]. Lithos, 2006, 91(1/4): 19-34.
    [98]
    毛景文, 张作衡, 裴荣富. 中国矿床模型概论[M]. 北京: 地质出版社, 2012.

    MAO J W, ZHANG Z H, PEI R F. Mineral deposit models in China[M]. Beijing: Geological Publishing House, 2012. (in Chinese)
    [99]
    GYSI A P, WILLIAMS-JONES A E, COLLINS P. Lithogeochemical vectors for hydrothermal processes in the Strange Lake peralkaline granitic REE-Zr-Nb deposit[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 2016, 111(5): 1241-1276. doi: 10.2113/econgeo.111.5.1241
    [100]
    杨武斌, 牛贺才, 单强, 等. 巴尔哲超大型稀有稀土矿床成矿机制研究[J]. 岩石学报, 2009, 25(11): 2924-2932.

    YANG W B, NIU H C, SHAN Q, et al. Ore-forming mechanism of the Baerzhe super-large rare and rare earth elements deposit[J]. Acta Petrologica Sinica, 2009, 25(11): 2924-2932. (in Chinese with English abstract)
    [101]
    SALVI S, WILLIAMS-JONES A E. The role of hydrothermal processes in concentrating high-field strength elements in the Strange Lake peralkaline complex, northeastern Canada[J]. Geochimica et Cosmochimica Acta, 1996, 60(11): 1917-1932. doi: 10.1016/0016-7037(96)00071-3
    [102]
    YANG X, LAI X, PIRAJNO F, et al. Genesis of the Bayan Obo Fe-REE-Nb formation in Inner Mongolia, North China Craton: A perspective review[J]. Precambrian Research, 2017, 288: 39-71. doi: 10.1016/j.precamres.2016.11.008
    [103]
    DUMAHSKA-SŁOWIK M. Evolution of mariupolite(nepheline syenite) in the alkaline Oktiabrski Massif(Ukraine) as the host of potential Nb-Zr-REE mineralization[J]. Ore Geology Reviews, 2016, 78: 1-13. doi: 10.1016/j.oregeorev.2016.03.011
    [104]
    WU M Q, SAMSON I M, QIU K F, et al. Concentration mechanisms of rare earth element-Nb-Zr-Be mineralization in the Baerzhe deposit, Northeast China: Insights from textural and chemical features of amphibole and rare metal minerals[J]. Economic Geology, 2021, 116(3): 651-679. doi: 10.5382/econgeo.4789
    [105]
    SU H M, JIANG S Y, ZHU X Y, et al. Magmatic-hydrothermal processes and controls on rare-metal enrichment of the Baerzhe peralkaline granitic pluton, Inner Mongolia, northeastern China[J]. Ore Geology Reviews, 2021, 131: 103984. doi: 10.1016/j.oregeorev.2021.103984
    [106]
    YANG W B, NIU H C, SHAN Q, et al. Geochemistry of magmatic and hydrothermal zircon from the highly evolved Baerzhe alkaline granite: Implications for Zr-REE-Nb mineralization[J]. Mineralium Deposita, 2014, 4(49): 451-470.
    [107]
    VASYUKOVA O, WILLIAMS-JONES A E. The evolution of immiscible silicate and fluoride melts: Implications for REE ore-genesis[J]. Geochimica et Cosmochimica Acta, 2016, 172: 205-224. doi: 10.1016/j.gca.2015.09.018
    [108]
    VASYUKOVA O V, WILLIAMS-JONES A E. Tracing the evolution of a fertile REE granite by modelling amphibole-melt partitioning, the Strange Lake story[J]. Chemical Geology, 2019, 514: 79-89. doi: 10.1016/j.chemgeo.2019.03.030
    [109]
    BERNARD C, ESTRADE G, SALVI S, et al. Alkali pyroxenes and amphiboles: A window on rare earth elements and other high field strength elements behavior through the magmatic-hydrothermal transition of peralkaline granitic systems[J]. Contributions to Mineralogy and Petrology, 2020, 175(9): 1-27.
    [110]
    PIRAJNO F. Intracontinental anorogenic alkaline magmatism and carbonatites, associated mineral systems and the mantle plume connection[J]. Gondwana Research, 2015, 27(3): 1181-1216. doi: 10.1016/j.gr.2014.09.008
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(585) PDF Downloads(195) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return