Volume 43 Issue 2
Mar.  2024
Turn off MathJax
Article Contents
KANG Fengxin, ZHENG Tingting, FENG Yawei, XU Qiuxiao, LIU Bintao, WANG Yisheng, LI Chuanmo. Recharge coefficients and recharge mechanisms of precipitation to groundwater in karst areas of North China: A case study of Yangzhuang karst water system[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 268-282. doi: 10.19509/j.cnki.dzkq.tb20220477
Citation: KANG Fengxin, ZHENG Tingting, FENG Yawei, XU Qiuxiao, LIU Bintao, WANG Yisheng, LI Chuanmo. Recharge coefficients and recharge mechanisms of precipitation to groundwater in karst areas of North China: A case study of Yangzhuang karst water system[J]. Bulletin of Geological Science and Technology, 2024, 43(2): 268-282. doi: 10.19509/j.cnki.dzkq.tb20220477

Recharge coefficients and recharge mechanisms of precipitation to groundwater in karst areas of North China: A case study of Yangzhuang karst water system

doi: 10.19509/j.cnki.dzkq.tb20220477
More Information
  • Corresponding author: KANG Fengxin, E-mail: kangfengxin@126.com
  • Received Date: 31 Aug 2022
  • Rev Recd Date: 05 Jan 2023
  • Objective

    To establish a series of hydrogeological parameter for karst areas in North China, an on-site experimental study on water balance has been carried out since the 1980s in a closed spring-drainage karst water system in Yangzhuang, Shandong Province.

    Methods

    Based on long-term field observations of water balance elements spanning more than 40 years, the formulas for calculating precipitation infiltration recharge coefficients in bare, semi-covered and covered karst areas were derived. The correlation equations of the precipitation infiltration recharge coefficient α with precipitation P and water table depth D, as well as the series of adjustable maximum precipitation infiltration recharge coefficients in karst areas, were also established. The processes of precipitation infiltration and recharge and the mechanism of α change were explored.

    Results

    The results showed that α varied with D. Each rainfall segment P corresponded to a maximum precipitation infiltration recharge coefficient αmax and a maximum precipitation infiltration recharge volume, namely, the recharge limit Gmax, while the corresponding depth of water table was the optimal depth of water table Dcritical. When D was greater than Dcritical, the interception of the vadose zone increased with increasing water table depth and α was less than αmax.When D was less than Dcritical, the surface runoff increased with decreasing water table depth and α was less than αmax. Different rainfall segments corresponded to different Dcritical, and the corresponding αmax and Dcritical increased with increasing precipitation. At any water table depth, Gmax was constant and equal to the difference between the critical rainfall of saturation excess runoff and the maximum interception volume of vadose zone.

    Conclusion

    This study addressed the key scientific issues related to precipitation infiltration recharge in karst areas and improved the research level of karst water resources in North China.

     

  • The authors declare that no competing interests exist.
  • loading
  • [1]
    GOLDSCHEIDER N, CHEN Z, AULER A S, et al. Global distribution of carbonate rocks and karst water resources[J]. Hydrogeology Journal, 2020, 28(5): 1-17.
    [2]
    STEVANOVI Z. Karst waters in potable water supply: A global scale overview[J]. Environmental Earth Sciences, 2019, 78(23): 662. doi: 10.1007/s12665-019-8670-9
    [3]
    FORD D C, WILLIAMS P W. Karst geomorphology and hydrology[M]. [S. l. ]: Wiley, 2007: 562.
    [4]
    GOLDSCHEIDER N. A holistic approach to groundwater protection and ecosystem services in karst terrains[J]. Carbon Evapor, 2019, 34(4): 1241-1249. doi: 10.1007/s13146-019-00492-5
    [5]
    MINER W J, ADAMSON J K, ROCHAT P Y. Reconnaissance of the Diquini and Mariani springs and insights regarding the Massif de la Selle karst aquifer of Haiti[J]. Hydrogeology Journal, 2022, 30(5): 1349-1366. doi: 10.1007/s10040-022-02487-4
    [6]
    PLAN L, STADLER G. Case study: Klffer Spring-the major spring of the Vienna Water Supply(Austria)[M]//Anon. Groundwater Hydrology of Springs. [S. l. ]: [s. n. ], 2010: 411-427.
    [7]
    LA VIGNA F, MAZZA R, AMANTI M, et al. Groundwater of Rome[J]. Journal of Maps, 2016, 12(S1): 88-93.
    [8]
    SMIATEK G, KASPAR S, KUNSTMANN H. Hydrological climate change impact analysis for the Figeh spring near Damascus, Syria[J]. Journal of Hydrometeorology, 2013, 14(2): 577-593. doi: 10.1175/JHM-D-12-065.1
    [9]
    TIAN L, GAO Y, YANG G, et al. Isotopic tracers of sources of water for springs from the Edwards Aquifer, Central Texas, USA[J]. Hydrology Research, 2021, 52(3): 787-803. doi: 10.2166/nh.2021.011
    [10]
    ADAMSON J K, JEAN-BAPTISTE G, MINER W J. Summary of groundwater resources in Haiti[J]. Geoscience for the Public Good and Global Development: Toward a Sustainable Future, 2016, 520: 1-22.
    [11]
    ADAMSON J K, MINER W J, ROCHAT P Y, et al. Significance of river infiltration to the Port-au-Prince metropolitan region: A case study of two alluvial aquifers in Haiti[J]. Hydrogeology Journal, 2022, 30(5): 1367-1386. doi: 10.1007/s10040-022-02488-3
    [12]
    LUO M, CHEN Z, ZHOU H, et al. Hydrological response and thermal effect of karst springs linked to aquifer geometry and recharge processes[J]. Hydrogeology Journal, 2018, 26(2): 629-639. doi: 10.1007/s10040-017-1664-3
    [13]
    梁永平, 王维泰. 中国北方岩溶水系统划分与系统特征[J]. 地球学报, 2010, 31(6): 860-868. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201006017.htm

    LIANG Y P, WANG W T. The division and characteristics of karst water systems in northern China[J]. Acta Geoscientia Sinica, 2010, 31(6): 860-868. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201006017.htm
    [14]
    梁永平, 王维泰, 赵春红, 等. 中国北方岩溶水变化特征及其环境问题[J]. 中国岩溶, 2013, 32(1): 34-42. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201301008.htm

    LIANG Y P, WANG W T, ZHAO C H, et al. Variations of karst water and environmental problems in North China[J]. Carsologica Sinica, 2013, 32(1): 34-42. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201301008.htm
    [15]
    李传谟, 康凤新. 岩溶水资源及增源增采模型[M]. 济南: 山东科技出版社, 1999.

    LI C M, KANG F X. Karst water resources and its recharge and exploitation augmenting model[M]. Jinan: Shandong Science and Technology Press, 1999. (in Chinese)
    [16]
    KANG F X, JIN M G, QIN P R. Sustainable yield of a karst aquifer system: A case study of Jinan springs in northern China[J]. Hydrogeology Journal, 2011, 19(4): 851-863. doi: 10.1007/s10040-011-0725-2
    [17]
    CHEN C C, GILLIG D, MCCARL B A. Effects of climatic change on a water dependent regional economy: A study of the Texas Edwards Aquifer[J]. Climatic Change, 2001, 49(4): 397-409. doi: 10.1023/A:1010617531401
    [18]
    WONG C I, MAHLER B J, MUSGROVE M, et al. Changes in sources and storage in a karst aquifer during a transition from drought to wet conditions[J]. Journal of Hydrology, 2012, 468: 159-172.
    [19]
    QIAN J Z, ZHAN H B, WU Y F, et al. Fractured-karst spring-flow protections: A case study in Jinan, China[J]. Hydrogeology Journal, 2006, 14(7): 1192-1205. doi: 10.1007/s10040-006-0061-0
    [20]
    BREDEHOEFT J D. It is the discharge[J]. Ground Water, 2007, 45(5): 523. doi: 10.1111/j.1745-6584.2007.00305.x
    [21]
    张光辉, 费宇红, 申建梅, 等. 降水补给地下水过程中包气带变化对入渗的影响[J]. 水利学报, 2007, 38(5): 611-617. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200705015.htm

    ZHANG G H, FEI Y H, SHEN J M, et al. Influence of unsaturated zone thickness on precipitation infiltration for recharge of groundwater[J]. Journal of Hydraulic Engineering, 2007, 38(5): 611-617. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200705015.htm
    [22]
    JONES I C, BANNER J L, HUMPHREY J D. Estimating recharge in a tropical karst aquifer[J]. Water Resources Research, 2000, 36(5): 1289-1299. doi: 10.1029/1999WR900358
    [23]
    王树芳. 岩溶含水系统降水入渗补给研究进展[J]. 水文, 2014, 34(6): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-SWZZ201406001.htm

    WANG S F. Progress in study on precipitation infiltration recharge of karstic groundwater system[J]. Journal of China Hydrology, 2014, 34(6): 1-8. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SWZZ201406001.htm
    [24]
    尹德超, 罗明明, 张亮, 等. 基于流量衰减分析的次降水入渗补给系数计算方法[J]. 水文地质工程地质, 2016, 43(3): 11-16. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201603003.htm

    YIN D C, LUO M M, ZHANG L, et al. Methods of calculating recharge coefficient of precipitation event based on spring recession analyses[J]. Hydrogeology & Engineering Geology, 2016, 43(3): 11-16. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201603003.htm
    [25]
    纪轶群, 王树芳, 韩征, 等. 北京岩溶水系统降水入渗系数研究[J]. 人民黄河, 2020, 42(2): 38-41. https://www.cnki.com.cn/Article/CJFDTOTAL-RMHH202002010.htm

    JI Y Q, WANG S F, HAN Z, et al. Researchon infiltration coefficient of precipitation in karst area of Beijing[J]. Yellow River, 2020, 42(2): 38-41. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-RMHH202002010.htm
    [26]
    易连兴, 夏日元, 王喆, 等. 岩溶峰丛洼地区降水入渗系数: 以寨底岩溶地下河流域为例[J]. 中国岩溶, 2017, 36(4): 512-517. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201704012.htm

    YI L X, XIA R Y, WANG Z, et al. Infiltration coefficient of precipitation in karst peak-cluster depression area: A case study of Zhaidi karst underground river basin[J]. Carsologica Sinica, 2017, 36(4): 512-517. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201704012.htm
    [27]
    申豪勇, 梁永平, 唐春雷, 等. 应用氯量平衡法估算娘子关泉域典型岩溶区的降水入渗系数[J]. 水文地质工程地质, 2018, 45(6): 31-35. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201806005.htm

    SHEN H Y, LIANG Y P, TANG C L, et al. Estimation of the infiltration coefficient based on chloride mass balance in a typical karst region of the Niangziguan spring area[J]. Hydrogeology & Engineering Geology, 2018, 45(6): 31-35. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201806005.htm
    [28]
    WONG C I, MAHLER B J, MUSGROVE M, et al. Changes in sources and storage in a karst aquifer during a transition from drought to wet conditions[J]. Journal of Hydrology, 2012, 468/469: 159-172. doi: 10.1016/j.jhydrol.2012.08.030
    [29]
    ALLEY W M, HEALY R M, LaBAUGH J W, et al. Flow and storage in groundwater systems[J]. Science, 2002, 296: 1985-1990. doi: 10.1126/science.1067123
    [30]
    崔虎群, 李文鹏, 康卫东, 等. 黑河中游不同灌溉方式下地下水入渗补给特征研究[J]. 水文地质工程地质, 2022, 49(3): 22-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202203003.htm

    CUI H Q, LI W P, KANG W D, et al. A study of groundwater recharge under different irrigation conditions in the middle reaches of the Heihe River[J]. Hydrogeology & Engineering Geology, 2022, 49(3): 22-28. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202203003.htm
    [31]
    LI X Y, CONTRERAS S, SOLÉ-BENET A, et al. Controls of infiltration-runoff processes in Mediterranean karst rangelands in SE Spain[J]. Catena, 2011, 86(2): 98-109. doi: 10.1016/j.catena.2011.03.003
    [32]
    ALLEY W M, REILLY T E, FRANKE O L. Sustainability of ground-water resources[R]. [S. l. ]: U.S. Geological Survey Circular, 1999: 1186.
    [33]
    BREDEHOEFT J D, DURBIN T. Ground water development - the time to full capture problem[J]. Ground Water, 2010, 47(4): 506-514.
    [34]
    BROWN L J, DRAVID P N, HUDSON N A, et al. Sustainable groundwater resources, Heretaunga Plains, Hawke's Bay, New Zealand[J]. Hydrogeology Journal, 1999, 7(5): 440-453. doi: 10.1007/s100400050217
    [35]
    CONKLING H. Utilization of ground-water storage in stream system development[J]. Transactions of the American Society of Civil Engineers, 1946, 111(1): 275-305.
    [36]
    HEALY R W, COOK P G. Using groundwater levels to estimate recharge[J]. Hydrogeology Journal, 2002, 10(1): 91-109. doi: 10.1007/s10040-001-0178-0
    [37]
    HEALY R W. Estimating groundwater recharge[M]. Cambridge: Cambridge University Press, 2010.
    [38]
    SEWARD P, XU Y, BRENDONCK L. Sustainable groundwater use, the capture principle, and adaptive management[J]. Water S. A, 2006, 32(4): 473-482.
    [39]
    SOPHOCLEOUS M, DEVLIN J F. Discussion of paper "The water budget myth revised: Why hydrogeologist model"[J]. Ground Water, 2004, 42(4): 618. doi: 10.1111/j.1745-6584.2004.tb02630.x
    [40]
    STEPHENS D B. Also consider the recharge[J]. Ground Water, 2009, 47(1): 2-3.
    [41]
    刘元晴, 文冬光, 吕琳, 等. 沂蒙山区典型断陷盆地岩溶地下水系统特征: 以莱芜盆地为例[J]. 地质科技通报, 2022, 41(1): 157-167. doi: 10.19509/j.cnki.dzkq.2022.0013

    LIU Y Q, WEN D G, LV L, et al. Characteristics of karst groundwater flow systems of typical faulted basins in Yimeng Mountain area: A case study of Laiwu Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 157-167. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0013
    [42]
    郭蕾蕾, 魏良帅, 黄安邦, 等. 乌蒙山地区岩溶地下水流系统结构及其找水应用[J]. 地质科技通报, 2022, 41(1): 146-156. doi: 10.19509/j.cnki.dzkq.2022.0025

    GUO L L, WEI L S, HUANG A B, et al. Structure of karst groundwater system and its water exploration in Wumeng Mountain area[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 146-156. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0025
    [43]
    YUAN D X. Karst of China[M]. Beijing: Geological Publishing House, 1991.
    [44]
    梁永平, 申豪勇, 赵春红, 等. 对中国北方岩溶水研究方向的思考与实践[J]. 中国岩溶, 2021, 40(3): 363-380. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202103001.htm

    LIANG Y P, SHEN H Y, ZHAO C H, et al. Thinking and practice on the research direction of karst water in northern China[J]. Carsologica Sinica, 2021, 40(3): 363-380. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202103001.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(449) PDF Downloads(90) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return