Volume 42 Issue 3
May  2023
Turn off MathJax
Article Contents
Chen Liqing, Wu Juan, He Yifan, Jiang Qianqian, Wu Wei, Luo Chao, Du Guozheng. Fracture vein characteristics and paleofluid activities in the Lower Cambrian Qiongzhusi shale in the central portion of the Mianyang-Changning intracratonic Sag, Sichuan Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 142-152. doi: 10.19509/j.cnki.dzkq.tb20220584
Citation: Chen Liqing, Wu Juan, He Yifan, Jiang Qianqian, Wu Wei, Luo Chao, Du Guozheng. Fracture vein characteristics and paleofluid activities in the Lower Cambrian Qiongzhusi shale in the central portion of the Mianyang-Changning intracratonic Sag, Sichuan Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 142-152. doi: 10.19509/j.cnki.dzkq.tb20220584

Fracture vein characteristics and paleofluid activities in the Lower Cambrian Qiongzhusi shale in the central portion of the Mianyang-Changning intracratonic Sag, Sichuan Basin

doi: 10.19509/j.cnki.dzkq.tb20220584
  • Received Date: 19 Oct 2022
  • Huge and thick black shale was deposited in the Mianyang-Changning intracratonic sag of the Sichuan Basin, which is a favorable target for shale gas exploration in the future. Taking the paleofluid preserved in the Qiongzhusi Formation shale as the research object, based on the petrological and optical characteristics of fracture veins observed in cores and thin sections, the source and origin of the paleofluid were analyzed by carbon and oxygen isotope testing, the formation pressure evolution of shale gas was simulated by using BasinMod software, and the preservation conditions of Qiongzhusi Formation shale gas in the central portion and surrounding areas of the Mianyang-Changning intracratonic sag were discussed. The results show that fracture vein rarely appears in the Qiongzhusi Formation shale of wells GS17 and MX9. While multiple groups of bed-parallel and high-angle fractures appear in Well W201, which are filled with mesocrystalline to coarse crystalline calcite, fibrous calcite, saddle dolomite, barite, and quartz. Carbon and oxygen isotopes indicate that fracture veins were generated by fluids of hydrothermal solution or organic matter decarboxylation. Hydrocarbon generation, particularly the crude oil cracking, induced the strong overpressure in the Qiongzhusi Formation of the intracratonic sag and the Gaoshiti-Moxi area, and the overpressure has been preserved thus far. Although overpressure was also developed in the Weiyuan structure, it dissipated in the late tectonic movement. Compared with the intracratonic sag and Gaoshiti-Moxi area, the late preservation conditions of shale gas in the Weiyuan area were relatively harsh, but some local overpressure areas need to be focused on.

     

  • loading
  • [1]
    张道伟. 四川盆地未来十年天然气工业发展展望[J]. 天然气工业, 2021, 41(8): 34-45. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202108006.htm

    Zhang D W. Development prospect of natural gas industry in the Sichuan Basin in the next decade[J]. Natural Gas Industry, 2021, 41(8): 34-45(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202108006.htm
    [2]
    Ding Y, Li Z, Liu S, et al. Sequence stratigraphy and tectono-depositional evolution of a Late Ediacaran epeiric platform in the Upper Yangtze area, South China[J]. Precambrian Research, 2021, 354: 106077. doi: 10.1016/j.precamres.2020.106077
    [3]
    邹才能, 杜金虎, 徐春春, 等. 四川盆地震旦系-寒武系特大型气田形成分布、资源潜力及勘探发现[J]. 石油勘探与开发, 2014, 41(3): 278-293. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201403006.htm

    Zou C N, Du J H, Xu C C, et al. Formation, distribution, resource potential and discovery of the Sinian-Cambrian giant gas field, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2014, 41(3): 278-293(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201403006.htm
    [4]
    钟勇, 李亚林, 张晓斌, 等. 川中古隆起构造演化特征及其与早寒武世绵阳-长宁拉张槽的关系[J]. 成都理工大学学报: 自然科学版, 2014, 41(6): 703-712. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201406005.htm

    Zhong Y, Li Y L, Zhang X B, et al. Evolution characteristics of Central Sichuan palaeouplift and its relationship with Early Cambrian Mianyang-Changning intracratonic sag[J]. Journal of Chengdu University of Technology: Science & Technology Edition, 2014, 41(6): 703-712(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201406005.htm
    [5]
    刘树根, 王一刚, 孙玮, 等. 拉张槽对四川盆地海相油气分布的控制作用[J]. 成都理工大学学报: 自然科学版, 2016, 43(1): 1-23. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201601001.htm

    Liu S G, Wang Y G, Sun W, et al. Control of intracratonic sags on the hydrocarbon accumulations in the marine strata across the Sichuan Basin, China[J]. Journal of Chengdu University of Technology: Science & Technology Edition, 2016, 43(1): 1-23(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201601001.htm
    [6]
    魏国齐, 杨威, 谢武仁, 等. 克拉通内裂陷及周缘大型岩性气藏形成机制、潜力与勘探实践: 以四川盆地震旦系-寒武系为例[J]. 石油勘探与开发, 2022, 49(2): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202203004.htm

    Wei G Q, Yang W, Xie W R, et al. Formation mechanisms, potentials and exploration practices of large lithologic gas reservoirs in and around an intracratonic rift: Taking the Sinian-Cambrian of Sichuan Basin as an example[J]. Petroleum Exploration and Development, 2022, 49(2): 1-13(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202203004.htm
    [7]
    杜金虎, 汪泽成, 邹才能, 等. 上扬子克拉通内裂陷的发现及对安岳特大型气田形成的控制作用[J]. 石油学报, 2016, 37(1): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201601002.htm

    Du J H, Wang Z C, Zou C N, et al. Discovery of intra-cratonic rift in the Upper Yangtze and its control effect on the formation of Anyue giant gas field[J]. Acta Petrolei Sinica, 2016, 37(1): 1-16(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201601002.htm
    [8]
    魏国齐, 杨威, 杜金虎, 等. 四川盆地震旦纪-早寒武世克拉通内裂陷地质特征[J]. 天然气工业, 2015, 35(1): 24-35. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201501004.htm

    Wei G Q, Yang W, Du J H, et al. Geological characteristics of the Sinian-Early Cambrian intracratonic rift, Sichuan Basin[J]. Natural Gas Industry, 2015, 35(1): 24-35(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201501004.htm
    [9]
    杨雨, 罗冰, 张本健, 等. 四川盆地下寒武统筇竹寺组烃源岩有机质差异富集机制与天然气勘探领域[J]. 石油实验地质, 2021, 43(4): 611-619. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202104007.htm

    Yang Y, Luo B, Zhang B J, et al. Differential mechanisms of organic matter accumulation of source rocks in the Lower Cambrian Qiongzhusi Formation and implications for gas exploration fields in Sichuan Basin[J]. Petroleum Geology & Experimen, 2021, 43(4): 611-619(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202104007.htm
    [10]
    邹才能, 杨智, 孙莎莎, 等. "进源找油": 论四川盆地页岩油气[J]. 中国科学: 地球科学, 2020, 50(7): 903-920. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202007003.htm

    Zou C N, Yang Z, Sun S S, et al. "Exploring petroleum inside source kitchen": Shale oil and gas in Sichuan Basin[J]. Science China: Earth Sciences, 2020, 50(7): 903-920(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202007003.htm
    [11]
    董大忠, 高世葵, 黄金亮, 等. 论四川盆地页岩气资源勘探开发前景[J]. 天然气工业, 2014, 34(12): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201412001.htm

    Dong D Z, Gao S K, Huang J L, et al. A discussion on the shale gas exploration & development prospect in the Sichuan Basin[J]. Natural Gas Industry, 2014, 34(12): 1-15(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201412001.htm
    [12]
    梁峰, 姜巍, 戴赟, 等. 四川盆地威远-资阳地区筇竹寺组页岩气富集规律及勘探开发潜力[J]. 天然气地球科学, 2022, 33(5): 755-763. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202205007.htm

    Liang F, Jiang W, Dai Y, et al. Enrichment law and resource potential of shale gas of Qiongzhusi Formation in Weiyuan-Ziyang areas, Sichuan Basin[J]. Natural Gas Geoscience, 2022, 33(5): 755-763(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202205007.htm
    [13]
    杨跃明, 陈玉龙, 刘燊阳, 等. 四川盆地及其周缘页岩气勘探开发现状、潜力与展望[J]. 天然气工业, 2021, 41(1): 42-58. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202101006.htm

    Yang Y M, Chen Y L, Liu S Y, et al. Status, potential and prospect of shale gas exploration and development in the Sichuan Basin and its periphery[J]. Nature Gas Industry, 2021, 41(1): 42-58(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202101006.htm
    [14]
    周文, 徐浩, 余谦, 等. 四川盆地及其周缘五峰组-龙马溪组与筇竹寺组页岩含气性差异及成因[J]. 岩性油气藏, 2016, 28(5): 18-25. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201605002.htm

    Zhou W, Xu H, Yu Q, et al. Shale gas-bearing property differences and their genesis between Wufeng-Longmaxi Formation and Qiongzhusi Formation in Sichuan Basin and surrounding areas[J]. Lithologic Reservoirs, 2016, 28(5): 18-25(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201605002.htm
    [15]
    孙玮, 刘树根, 宋金民, 等. 叠合盆地古老深层碳酸盐岩油气成藏过程和特征: 以四川叠合盆地震旦系灯影组为例[J]. 成都理工大学学报: 自然科学版, 2017, 44(3): 257-285. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201703001.htm

    Sun W, Liu S G, Song J M, et al. The formation process and characteristics of ancient and deep carbonate petroleum reservoirs in superimposed basins: A case study of Sinian(Ediacaran) Dengying Formation in the Sichuan Superimposed Basin, China[J]. Journal of Chengdu University of Technology: Science & Technology Edition, 2017, 44(3): 257-285(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201703001.htm
    [16]
    付小东, 陈娅娜, 罗冰, 等. 中上扬子区下寒武统麦地坪组-筇竹寺组烃源岩与含油气系统评价[J]. 中国石油勘探, 2022, 27(4): 103-120. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202204008.htm

    Fu X D, Chen Y N, Luo B, et al. Evaluation of source rocks and petroleum system of the Lower Cambrian Maidiping Formation-Qiongzhusi Formation in the Middle-Upper Yangtze region[J]. China Petroleum Exploration, 2022, 27(4): 103-120(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202204008.htm
    [17]
    Griffith E M, Paytan A. Barite in the ocean: Occurrence, geochemistry and palaeoceanographic applications[J]. Sedimentology, 2012, 59(6): 1817-1835. http://pdfs.semanticscholar.org/154f/c1274ff7d307a00d62d19f928c045e0ae97a.pdf
    [18]
    Goldberg T, Mazumdar A, Strauss H, et al. Insights from stable S and O isotopes intobiogeochemical processes and genesis of Lower Cambrian barite-pyrite concretions of South China[J]. Organic Geochemistry, 2006, 37(10): 1278-1288. http://www.researchgate.net/profile/Graham_Shields-Zhou/publication/27667267_Insights_from_stable_S_and_O_isotopes_into_biogeochemical_processes_and_genesis_of_Lower_Cambrian_barite-pyrite_concretions_of_South_China/links/543bde870cf2d6698be342ce.pdf
    [19]
    昝博文, 刘树根, 冉波, 等. 扬子板块北缘下志留统龙马溪组重晶石结核特征及其成因机制分析[J]. 岩石矿物学杂志, 2017, 36(2): 213-226. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201702007.htm

    Zan B W, Liu S G, Ran B, et al. An analysis of barite concretions from Lower Silurian Longmaxi Formation on the northern margin of the Yangtze Block and their genetic mechanism[J]. Acta Petrologica et Mineralogica, 2017, 36(2): 213-226(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201702007.htm
    [20]
    王玉满, 陈波, 李新景, 等. 川东北地区下志留统龙马溪组上升洋流相页岩沉积特征[J]. 石油学报, 2018, 39(10): 1092-1102. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201810002.htm

    Wang Y M, Chen B, Li X J, et al. Sedimentary characteristics of upwelling facies shale in Lower Silurian Longmaxi Formation, northeast Sichuan area[J]. Acta Petrolei Sinica, 2018, 39(10): 1092-1102(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201810002.htm
    [21]
    昝博文. 大巴山南缘城口-巫溪地区龙马溪组底部重晶石特征及其古环境意义[D]. 成都: 成都理工大学, 2017.

    Zan B W. Characteristics of barite and its paleoenvironmental significance of Lower Silurian Longmaxi Formation in Chengkou and Wuxi area in the southern margin of Daba Mountain[D]. Chengdu: Chengdu University of Technology, 2017(in Chinese with English abstract).
    [22]
    Lash G G. Authigenic barite nodules and carbonate concretions in the Upper Devonian shale succession of western New York: A record of variable methane flux during burial[J]. Marine and Petroleum Geology, 2015, 59: 305-319. http://dialog.proquest.com/professional/professional/docview/1661393636?accountid=131175
    [23]
    田涛, 周世新, 付德亮, 等. 米仓山-汉南隆起牛蹄塘组页岩稳定碳同位素组成及其意义[J]. 中国石油大学学报: 自然科学版, 2019, 43(4): 40-51. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201904005.htm

    Tian T, Zhou S X, Fu D L, et al. Composition of carbon isotope of Niutitang Formation in Micangshan-Hannan Uplift and its significances[J]. Journal of China University of Petroleum: Edition of Natural Science, 2019, 43(4): 40-51(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201904005.htm
    [24]
    张春宇, 管树巍, 吴林, 等. 塔西北地区下寒武统碳酸盐岩地球化学特征及其古环境意义: 以舒探1井为例[J]. 地质科技通报, 2021, 40(5): 99-111. doi: 10.19509/j.cnki.dzkq.2021.0508

    Zhang C Y, Guan S W, Wu L, et al. Geochemical characteristics and its paleo-environmental significance of the Lower Cambrian carbonate in the northwestern Tarim Basin: A case study of Well Shutan-1[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 99-111(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0508
    [25]
    刘安, 陈孝红, 肖七林, 等. 寒武系古流体地球化学特征及其对页岩气保存的指示意义: 以中扬子地区寒武系页岩气发现井宜地2井为例[J]. 地质学报, 2022, 96(7): 2573-2584. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202207022.htm

    Liu A, Chen X H, Xiao Q L, et al. Geochemistry characteristics of Cambrian paleofluid and its implications for shale gas preservation: A study case of the Yidi 2 well in the Yichang area[J]. Acta Geologica Sinica, 2022, 96(7): 2573-2584(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202207022.htm
    [26]
    刘安, 周鹏, 陈孝红, 等. 运用方解石脉包裹体和碳氧同位素评价页岩气保存条件: 以中扬子地区寒武系为例[J]. 天然气工业, 2021, 41(2): 47-55. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202102010.htm

    Liu A, Zhou P, Chen X H, et al. Evaluation of shale gas preservation conditions using calcite vein inclusions and C/O isotopes: A case study on the Cambrian strata of Middle Yangtze area[J]. Natural Gas Industry, 2021, 41(2): 47-55(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202102010.htm
    [27]
    李文. 涪陵与宜昌地区海相页岩裂缝脉体成因及流体包裹体古温压特征[D]. 武汉: 中国地质大学(武汉), 2018.

    Li W. Origins of fractured veins and characteristics of paleo-temperature and pressure of fluid inclusions in marine shales of Fuling and Yichang regions[D]. Wuhan: China University of Geosciences(Wuhan), 2018(in Chinese with English abstract).
    [28]
    高键. 渝东地区五峰-龙马溪组页岩裂缝脉体古温压及古流体成因[D]. 武汉: 中国地质大学(武汉), 2018.

    Gao J. Paleo-temperature and pressure and origin of paleo-fluid of fracture veins in the Wufeng-Longmaxi shales of Yudong area[D]. Wuhan: China University of Geosciences(Wuhan), 2018(in Chinese with English abstract).
    [29]
    黄伟林, 冯明友, 刘小洪, 等. 渝东石柱地区龙马溪组页岩纤维状脉体成因[J]. 地质科技通报, 2020, 39(3): 160-169. doi: 10.19509/j.cnki.dzkq.2020.0317

    Huang W L, Feng M Y, Liu X H, et al. Genesis of fibrous veins in the shales of Longmaxi Formation in Shizhu area, eastern Chongqing[J]. Bulletin of Geological Science and Technology, 2020, 39(3): 160-169(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0317
    [30]
    陈少伟, 刘建章. 含油气盆地微观裂缝脉体期次、成因与流体演化研究进展及展望[J]. 地质科技通报, 2021, 40(4): 81-92. doi: 10.19509/j.cnki.dzkq.2021.0426

    Chen S W, Liu J Z. Research progress and prospects of the stages, genesis and fluid evolution of micro-fracture veins in petroliferous basins[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 81-92(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0426
    [31]
    Irwin H, Curtis C, Coleman M. Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments[J]. Nature, 1977, 269: 209-213. http://www.nature.com/nature/journal/v269/n5625/pdf/269209a0.pdf
    [32]
    牛英杰, 孙宏岩, 王居松, 等. 老挝帕奔金矿成矿流体特征及成因类型[J]. 地质找矿论丛, 2017, 32(2): 317-323. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK201702021.htm

    Niu Y J, Sun H Y, Wang J S, et al. Study on features of ore-forming fluid and ore genesis of phapon gold deposit, Luangprobang, Laos[J]. Contributions to Geology and Mineral Resources Research, 2017, 32(2): 317-323(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK201702021.htm
    [33]
    吴安彬, 罗群, 代兵, 等. 海相高演化页岩裂缝方解石脉成因机制及指示意义[J]. 中国石油大学学报: 自然科学版, 2022, 46(3): 25-35. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX202203003.htm

    Wu A B, Luo Q, Dai B, et al. Genetic mechanism and indicative significance of fracture calcite veins in marine high-evolution shale[J]. Journal of China University of Petroleum: Edition of Natural Science, 2022, 46(3): 25-35(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX202203003.htm
    [34]
    何陈诚, 陈红汉, 肖雪薇, 等. 中-上扬子地区下寒武统筇竹寺阶泥页岩差异成气过程分析[J/OL]. 地学前缘. https://doi.org/10.13745/j.esf.2022.5.33.

    He C C, Chen H H, Xiao X W, et al. Study on differential processes of shale gas generation of the Lower Cambrian Qiongzhusi Stage source rocks in the Middle and Upper Yangtze region[J/OL]. Earth Science Frontiers. https://doi.org/10.13745/j.esf.2022.5.33 (in Chinese with English abstract).
    [35]
    吴娟, 陈学忠, 刘文平, 等. 川南五峰组-龙马溪组页岩流体活动及压力演化过程[J]. 地球科学, 2022, 47(2): 518-531. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202202010.htm

    Wu J, Chen X Z, Liu W P, et al. Fluid activity and pressure evolution process of Wufeng-Longmaxi shales, southern Sichuan Basin[J]. Earth Science, 2022, 47(2): 518-531(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202202010.htm
    [36]
    马新华, 谢军, 雍锐. 四川盆地南部龙马溪组页岩气地质特征及高产控制因素[J]. 石油勘探与开发, 2020, 47(5): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202005003.htm

    Ma X H, Xie J, Yong R. Geological characteristics and high production control factors of shale gas reservoirs in Silurian Longmaxi Formation, southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2020, 47(5): 1-15(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202005003.htm
    [37]
    吴娟, 叶加仁, 施和生, 等. 恩平凹陷中央断裂构造带超压发育及成藏意义[J]. 中南大学学报: 自然科学版, 2013, 44(7): 2801-2811. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201307025.htm

    Wu J, Ye J R, Shi H S, et al. Overpressure forming and its effect on petroleum accumulation in central faulted structural belt of Enping Depression, China[J]. Journal of Central South University: Science and Technology, 2013, 44(7): 2801-2811(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201307025.htm
    [38]
    王尉, 赵路子, 罗冰, 等. 川西地区二叠系火山岩异常高压演化与天然气成藏的关系[J]. 石油学报, 2021, 42(11): 1437-1445. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202111004.htm

    Wang W, Zhao L Z, Luo B, et al. Relationship between abnormal high pressure evolution of Permian volcanic rocks and natural gas accumulation in the western Sichuan Basin[J]. Acta Petrolei Sinica, 2021, 42(11): 1437-1445(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202111004.htm
    [39]
    李伟, 易海永, 胡望水, 等. 四川盆地加里东古隆起构造演化与油气聚集的关系[J]. 天然气工业, 2014, 34(3): 8-15. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201403004.htm

    Li W, Yi H Y, Hu W S, et al. Tectonic evolution of Caledonian paleohigh in the Sichuan Basin and its relationship with hydrocarbon accumulation[J]. Natural Gas Industry, 2014, 34(3): 8-15(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201403004.htm
    [40]
    刘树根, 孙玮, 赵异华, 等. 四川盆地震旦系灯影组天然气的差异聚集分布及其主控因素[J]. 天然气工业, 2015, 35(1): 10-23. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201501002.htm

    Liu S G, Sun W, Zhao Y H, et al. Differential accunmulation and distribution of natural gas and their main controlling factors in the Upper Sinian Dengying Fm, Sichuan Basin[J]. Natural Gas Industry, 2015, 35(1): 10-23(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201501002.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(429) PDF Downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return