Volume 42 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Zhu Honghu. Engineering geological interface: From multivariate characterization to evolution mechanism[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 1-19. doi: 10.19509/j.cnki.dzkq.tb20220661
Citation: Zhu Honghu. Engineering geological interface: From multivariate characterization to evolution mechanism[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 1-19. doi: 10.19509/j.cnki.dzkq.tb20220661

Engineering geological interface: From multivariate characterization to evolution mechanism

doi: 10.19509/j.cnki.dzkq.tb20220661
  • Received Date: 28 Nov 2022
  • The engineering geological interface is defined as the contact surfaces between two or more media in strata, as well as the transition surfaces that control the migration of three-phase matter, the change in physical states and the stability of rock and soil masses. Under the combined action of natural loads and engineering activities, they play a controlling role in the emergence, propagation, and triggering of geological disasters. How to accurately capture multifield evolution information, understand the catastrophic dynamics, and clarify the interaction mechanism of the interface are key scientific issues in the research field of geohazard mitigation and prevention. On the basis of reviewing the development history of engineering geological interface-related research areas, this paper summarizes the basic concepts, classification systems, and critical characteristics of the interface. Taking the landslides in the Three Gorges reservoir area of the Yangtze River as an example and combined with the research works of our team, we elaborated the latest research progress in multivariate characterization and evolution mechanism of engineering geological interfaces, and finally prospected the future development trends in this paper. The above review shows that the engineering geological interfaces is the critical zone inducing geological hazards, which can be divided into three types: material interface, state interface, and motion interface. By introducing fiber optic sensing and other technologies, the intelligent characterization of multivariate of engineering geological interfaces is preliminarily realized. On the basis of long-term in-situ monitoring of reservoir landslides, the disaster evolution mechanism and interface control modes are systematically summarized. According to the discipline development trend and national demand, more attention should be given to developing and building an integrated three-dimensional space-sky-surface-body monitoring network in the future, considering the characteristics of engineering geological interface. In this way, real-time acquisition and identification of thermal-hydrologic-mechanical multifield coupling information of key interfaces will be realized. By combining big data and artificial intelligence technologies, corresponding early warning and forecasting systems will be developed, so as to improve the prevention level and response capability of major geological disasters.

     

  • loading
  • [1]
    Paronuzzi P, Bolla A. The prehistoric Vajont rockslide: An updated geological model[J]. Geomorphology, 2012, 169/170: 165-191. https://www.sciencedirect.com/science/article/pii/S0169555X12002048
    [2]
    CEDD. When hillside collapse: A century of landslides in Hong Kong[M]. Hong Kong: Civil Engineering and Development Department, HKSAR Government, 2005.
    [3]
    谷德振. 地质构造与工程建设[J]. 科学通报, 1963, 10: 23-29. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB196310004.htm

    Gu D Z. Geological structure and engineering construction[J]. Science Bulletin, 1963, 10: 23-29(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB196310004.htm
    [4]
    孙玉科, 李建国. 岩质边坡稳定性的工程地质研究[J]. 地质科学, 1965, 6(4): 330-352. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX196504003.htm

    Sun Y K, Li J G. Engineering geology study of rock slope stability[J]. Chinese Journal of Geology, 1965, 6(4): 330-352(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX196504003.htm
    [5]
    孙广忠. 论"岩体结构控制论"[J]. 工程地质学报, 1993, 1(1): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ199301003.htm

    Sun G Z. On "cybernetics of rock mass structures"[J]. Journal of Engineering Geology, 1993, 1(1): 14-18(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ199301003.htm
    [6]
    罗国煜, 王培清, 蔡钟业, 等. 论边坡两类优势面的概念及其研究方法[J]. 岩土工程学报, 1982, 4(2): 40-45. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC198202005.htm

    Luo G Y, Wang P Q, Cai Z Y, et al. On the concept of two types of dominant surfaces of slope and their research methods[J]. Chinese Journal of Geotechnical Engineering, 1982, 4(2): 40-45(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC198202005.htm
    [7]
    彭建兵, 王启耀, 门玉明, 等. 黄土高原滑坡灾害[M]. 北京: 科学出版社, 2019.

    Peng J B, Wang Q Y, Men Y M, et al. Loess Plateau landslide disaster[M]. Beijing: Science Press, 2019(in Chinese).
    [8]
    彭建兵, 张勤, 黄强兵, 等. 西安地裂缝灾害[M]. 北京: 科学出版社, 2012.

    Peng J B, Zhang Q, Huang Q B, et al. Xi'an fissure disaster[M]. Beijing: Science Press, 2012(in Chinese).
    [9]
    黄平, 郭丹, 温诗铸. 界面力学[M]. 北京: 清华大学出版社, 2013.

    Huang P, Guo D, Wen S Z. Interface mechanics[M]. Beijing: Tsinghua University Press, 2013(in Chinese).
    [10]
    何满潮. 基于界面牛顿力测量的双体灾变力学模型研究[J]. 岩石力学与工程学报, 2016, 35(11): 2161-2173. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201611001.htm

    He M C. Research on the double-block mechanics based on Newton force measurement[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(11): 2161-2173(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201611001.htm
    [11]
    罗国煜, 王培清, 陈华生, 等. 岩坡优势面分析理论与方法[M]. 北京: 地质出版社, 1992.

    Luo G Y, Wang P Q, Chen H S, et al. Theory and method of rock slope dominant surface analysis[M]. Beijing: Geology Press, 1992(in Chinese).
    [12]
    蒋建平, 罗国煜. 土坡中的优势结构面分析[J]. 工程地质学报, 2000, 8(4): 438-441. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200004009.htm

    Jiang J P, Luo G Y. Analysis of preferred plane in the soil slope[J]. Journal of Engineering Geology, 2000, 8(4): 438-441(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200004009.htm
    [13]
    黄润秋, 陈国庆, 唐鹏. 基于动态演化特征的锁固段型岩质滑坡前兆信息研究[J]. 岩石力学与工程学报, 2017, 36(3): 521-533. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201703001.htm

    Huang R Q, Chen G Q, Tang P. Precursor information of locking segment landslides based on transient characteristics[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(3): 521-533(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201703001.htm
    [14]
    Tang H M, Wasowski J, Juang C H. Geohazards in the Three Gorges Reservoir area, China: Lessons learned from decades of research[J]. Engineering Geology, 2019, 261: 105267.
    [15]
    唐辉明. 重大滑坡预测预报研究进展与展望[J]. 地质科技通报, 2022, 41(6): 1-13. doi: 10.19509/j.cnki.dzkq.2022.0203

    Tang H M. Advance and prospect on prediction and forecasting of major landslides[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 1-13(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2022.0203
    [16]
    雍睿, 胡新丽, 唐辉明, 等. 推移式滑坡演化过程模型试验与数值模拟研究[J]. 岩土力学, 2013, 34(10): 3018-3027. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201310039.htm

    Yong R, Hu X L, Tang H M, et al. Model testing and numerical simulation study of evolutionary process of thrust load caused landslide[J]. Rock and Soil Mechanics, 2013, 34(10): 3018-3027(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201310039.htm
    [17]
    Frost J D, Dejong J T, Recalde M. Shear failure behavior of granular-continuum interfaces[J]. Engineering Fracture Mechanics, 2002, 69(17): 2029-2048. https://www.sciencedirect.com/science/article/pii/S0013794402000759
    [18]
    殷宗泽, 朱弘, 许国华. 土与结构材料接触面的变形及其数学模拟[J]. 岩土工程学报, 1994, 16(3): 14-22. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC403.001.htm

    Yin Z Z, Zhu H, Xu G H. Numerical simulation of the deformation in the interface between soil and structure material[J]. Chinese Journal of Geotechnical Engineering, 1994, 16 (3): 14-22(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC403.001.htm
    [19]
    郑颖人, 叶海林, 黄润秋. 地震边坡破坏机制及其破裂面的分析探讨[J]. 岩石力学与工程学报, 2009, 28(8): 1714-1723. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200908029.htm

    Zheng Y R, Ye H L, Huang R Q. Analysis and discussion of failure mechanism and fracture surface of slope under earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(8): 1714-1723(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200908029.htm
    [20]
    Potts D M. Finite element analysis in geotechnical engineering: Theory[M]. [S. l. ]: Thomas Telford, 1999.
    [21]
    Goodman R E, Taylor R L, Brekke T L A. A model for the mechanics of jointed rock[J]. ASCE Soil Mechanics and Foundation Division Journal, 1968, 99(5): 637-659.
    [22]
    Desai C S, Zaman M M, Lightner J G, et al. Thin-layer element for interfaces and joints[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1984, 8(1): 19-43.
    [23]
    廖雄华, 李锡夔. 关于土-结相互作用界面力学行为的数值模拟[J]. 计算力学学报, 2002, 19(4): 450-455. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG200204013.htm

    Liao X H, Li X K. Some examining viewpoints on numerical modeling of the interface behavior in soil-structure interaction problems[J]. Chinese Journal of Computational Mechanics, 2002, 19(4): 450-455(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG200204013.htm
    [24]
    杜时贵, 黄曼, 罗战友, 等. 岩石结构面力学原型试验相似材料研究[J]. 岩石力学与工程学报, 2010, 29(11): 2263-2270. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201011014.htm

    Du S G, Huang M, Luo Z Y, et al. Similar material study of mechanical prototype test of rock structural plane[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(11): 2263-2270(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201011014.htm
    [25]
    胡瑞林, 李晓, 王宇, 等. 土石混合体工程地质力学特性及其结构效应研究[J]. 工程地质学报, 2020, 28(2): 255-281. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202002008.htm

    Hu R L, Li X, Wang Y, et al. Research on engineering geomechanics and structural effect of soil-rock mixture[J]. Journal of Engineering Geology, 2020, 28(2): 255-281(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202002008.htm
    [26]
    Frost J D, Han J. Behavior of interfaces between fiber reinforced polymers and sands[J]. Journal of Geotechnical andGeoenvironmental Engineering, 1999, 125(8): 633-640. doi: 10.1061/%28ASCE%291090-0241%281999%29125%3A8%28633%29
    [27]
    Chu L M, Yin J H. Comparison of interface shear strength of soil nails measured by both direct shear box tests and pullout tests[J]. Journal of Geotechnical andGeoenvironmental Engineering, 2005, 131(9): 1097-1107. doi: 10.1061/%28ASCE%291090-0241%282005%29131%3A9%281097%29
    [28]
    Zhu H H, Yin J H, Yeung A T, et al. Field pullout testing and performance evaluation of GFRP soil nails[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(7): 633-642. doi: 10.1061/(ASCE)GT.1943-5606.0000457
    [29]
    朱鸿鹄, 张诚成, 裴华富, 等. GFRP土钉拉拔特性研究[J]. 岩土工程学报, 2012, 34(10): 1843-1849. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201210013.htm

    Zhu H H, Zhang C C, Pei H F, et al. Pullout mechanism of GFRP soil nails[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1843-1849(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201210013.htm
    [30]
    张景科, 谌文武, 和法国, 等. 土遗址加固中GFRP锚杆锚固性能现场试验研究[J]. 工程地质学报, 2014, 22(5): 804-810. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201405005.htm

    Zhang J K, Chen W W, He F G, et al. Field experimental study on anchorage performance of GFRP at conservation earthen sites[J]. Journal of Engineering Geology, 2014, 22(5): 804-810(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201405005.htm
    [31]
    Zhang C C, Zhu H H, Xu Q, et al. Time-dependent pullout behavior of glass fiber reinforced polymer (GFRP) soil nail in sand[J]. Canadian Geotechnical Journal, 2015, 52(6): 670-681.
    [32]
    冯世进, 刘鑫. 土工膜与土界面剪切特性细观研究[J]. 工程地质学报, 2017, 25(1): 43-49. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201701006.htm

    Feng S J, Liu X. Mesoscopical study on interface properties between geomembrane and soil[J]. Journal of Engineering Geology, 2017, 25(1): 43-49(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201701006.htm
    [33]
    周健, 王家全, 孔祥利, 等. 砂土颗粒与土工合成材料接触界面细观研究[J]. 岩土工程学报, 2010, 32(1): 61-67. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201001012.htm

    Zhou J, Wang J Q, Kong X L, et al. Mesoscopic study of the interface between sandy soil and geosynthetics[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1): 61-67(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201001012.htm
    [34]
    李元海, 靖洪文, 朱合华, 等. 基于图像相关分析的土体剪切带识别方法[J]. 岩土力学, 2007, 28(3): 522-526. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200703018.htm

    Li H Y, Jing H W, Zhu H H, et al. A technique of identifying shear band accurately in granular soil using image correlation analysis[J]. Rock and Soil Mechanics, 2007, 28(3): 522-526(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200703018.htm
    [35]
    Li H J, Zhu H H, Li Y H, et al. Experimental study on uplift mechanism of pipeline buried in sand using high-resolution fiber optic strain sensing nerves[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(4): 1304-1318.
    [36]
    Gao Y X, Zhu H H, Ni Y F, et al. Experimental study on uplift behavior of shallow anchor plates in geogrid-reinforced soil[J]. Geotextiles and Geomembranes, 2022, 50(5): 994-1003.
    [37]
    Hu W, Huang R Q, Mcsaveney M, et al. Superheated steam, hot CO2 and dynamic recrystallization from frictional heat jointly lubricated a giant landslide: Field and experimental evidence[J]. Earth and Planetary Science Letters, 2019, 510: 85-93. https://www.sciencedirect.com/science/article/pii/S0012821X19300159
    [38]
    Casagrande A. Karl Terzaghi: 1883-1963[J]. Geotechnique, 1964, 14(1): 1-13. doi: 10.1007/BF01704946
    [39]
    Peck R B. Advantages and limitations of the observational method in applied soil mechanics[J]. Geotechnique, 1969, 19(2): 169-187. doi: 10.1680/geot.1969.19.2.171
    [40]
    Kao K C, Hockham G A. Dielectric fibre surface waveguides for optical frequencies[J]. Proceedings of IEE, 1966, 113(7): 1151-1158. http://image.sciencenet.cn/olddata/kexue.com.cn/upload/blog/file/2009/10/20091074264908976.pdf
    [41]
    王惠文. 光纤传感技术与应用[M]. 北京: 国防工业出版社, 2001.

    Wang H W. Optical fiber sensing technology and application[M]. Beijng: National Defense Industry Press, 2001(in Chinese).
    [42]
    Chen M, Mao S, Liu Y. Big data: A survey[J]. Mobile Networks and Applications, 2014, 19(2): 171-209.
    [43]
    施斌, 张丹, 朱鸿鹄. 地质与岩土工程分布式光纤监测技术[M]. 北京: 科学出版社, 2019.

    Shi B, Zhang D, Zhu H H. Distributed fiber optic sensing for geoengineering monitoring[M]. Beijing: Science Press, 2019(in Chinese).
    [44]
    Zhu H H, Shi B, Zhang C C. FBG-based monitoring of geohazards: Current status and trends[J]. Sensors, 2017, 17(3): 452.
    [45]
    Schenato L. A review of distributed fibre optic sensors for geo-hydrological applications[J]. Applied Sciences, 2017, 7: 896.
    [46]
    施斌. 论大地感知系统与大地感知工程[J]. 工程地质学报, 2017, 25(3): 582-591. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201703002.htm

    Shi B. On the ground sensing system and ground sensing engineering[J]. Journal of Engineering Geology, 2017, 25(3): 582-591(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201703002.htm
    [47]
    Ye X, Zhu H H, Wang J, et al. Subsurface multi-physical monitoring of a reservoir landslide with the fiber-optic nerve system[J]. Geophysical Research Letters, 2022, 49: e2022GL098211.
    [48]
    Zhu H H, Wang D Y, Shi B, et al. Performance monitoring of a curved shield tunnel during adjacent excavations using a fiber optic nervous sensing system[J]. Tunnelling and Underground Space Technology, 2022, 124: 104483.
    [49]
    Zhang C C, Zhu H H, Shi B, et al. Experimental investigation of pullout behavior of fiber-reinforced polymer reinforcements in sand[J]. Journal of Composites for Construction, 2015, 19(3): 04014062. doi: 10.1061/%28ASCE%29CC.1943-5614.0000526
    [50]
    朱鸿鹄, 张诚成, 施斌, 等. GFRP锚杆拉拔时效模型研究[J]. 工程地质学报, 2012, 20(5): 862-867. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201205031.htm

    Zhu H H, Zhang C C, Shi B, et al. Physical modelling of time dependent pullout behavior associated with GFRP anchor[J]. Journal of Engineering Geology, 2012, 20(5): 862-867(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201205031.htm
    [51]
    Dunnicliff J. Geotechnical instrumentation for monitoring field performance[M]. New York: John Wiley & Sons Inc., 1993.
    [52]
    王德洋, 朱鸿鹄, 朱泳, 等. 薄壁圆环分布式光纤测力传感器的性能[J]. 激光与光电子学进展, 2019, 56(10): 54-59. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201910006.htm

    Wang D Y, Zhu H H, Zhu Y, et al. Performances of distributed fiber optic strain sensor with thin-walled ring[J]. Laser Optoelectronic Progress, 2019, 56(10): 54-59(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201910006.htm
    [53]
    朱鸿鹄, 王德洋, 王宝军, 等. 基于光纤传感及数字图像测试的管-土相互作用试验研究[J]. 工程地质学报, 2020, 28(2): 317-326. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202002012.htm

    Zhu H H, Wang D Y, Wang B J, et al. Experimental study on pipe-soil interaction using fiber optic sensing and digital image analysis[J]. Journal of Engineering Geology, 2020, 28(2): 317-326(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202002012.htm
    [54]
    朱武, 张勤, 朱建军, 等. 特大滑坡实时监测预警与技术装备研发[J]. 岩土工程学报, 2022, 44(7): 1341-1350. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202207014.htm

    Zhu W, Zhang Q, Zhu J J, et al. Real-time monitoring and early warning technology for huge landslides[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1341-1350(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202207014.htm
    [55]
    彭建兵, 王启耀, 庄建琦, 等. 黄土高原滑坡灾害形成动力学机制[J]. 地质力学学报, 2020, 26(5): 714-730. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202005008.htm

    Peng J B, Wang Q Y, Zhuang J Q, et al. Dynamic formation mechanism of landslide disaster on the Loess Plateau[J]. Journal of Geomechanics, 2020, 26(5): 714-730(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202005008.htm
    [56]
    Lu N, Godt J W. Hillslope hydrology and stability[M]. Cambridge: Cambridge University Press, 2013.
    [57]
    Steele-Dunne S C, Rutten M M, Krzeminska D M, et al. Feasibility of soil moisture estimation using passive distributed temperature sensing[J]. Water Resources Research, 2010, 46(3): 1-8. doi: 10.1029/2009WR008272
    [58]
    Cao D F, Zhu H H, Guo C, et al. Passive distributed temperature sensing (PDTS)-based moisture content estimation in agricultural soils under different vegetative canopies[J]. Paddy and Water Environment, 2021, 19(3): 383-393.
    [59]
    Weiss J D. Using fiber optics to detect moisture intrusion into a landfill cap consisting of a vegetative soil barrier[J]. Journal of the Air & Waste Management Association, 2003, 53(9): 1130-1148.
    [60]
    Sayde C, Gregory C, Gil-Rodriguez M, et al. Feasibility of soil moisture monitoring with heated fiber optics[J]. Water Resources Research, 2010, 46: W06201. doi: 10.1029/2009WR007846
    [61]
    Yan J F, Shi B, Zhu H H, et al. A quantitative monitoring technology for seepage in slopes using DTS[J]. Engineering Geology, 2015, 186: 100-104. https://www.sciencedirect.com/science/article/pii/S0013795215000022
    [62]
    Cao D F, Shi B, Zhu H H, et al. A distributed measurement method for in-situ soil moisture content by using carbon-fiber heated cable[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7(6): 700-707. https://www.sciencedirect.com/science/article/pii/S1674775515001067
    [63]
    Cao D F, Shi B, Wei G Q, et al. An improved distributed sensing method for monitoring soil moisture profile using heated carbon fibers[J]. Measurement, 2018, 123: 175-184. https://www.sciencedirect.com/science/article/pii/S0263224118302379
    [64]
    Cao D F, Shi B, Zhu H H, et al. Feasibility investigation of improving the modified Green-Ampt model for treatment of horizontal infiltration in soil[J]. Water, 2019, 11(4): 645.
    [65]
    吴冰, 朱鸿鹄, 曹鼎峰, 等. 黄土水分场光纤原位监测及非饱和渗透系数估算[J]. 防灾减灾工程学报, 2019, 39(5): 691-699. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201905001.htm

    Wu B, Zhu H H, Cao D F, et al. In-situ monitoring of moisture field and estimation of unsaturated permeability coefficient of loess foundation[J]. Journal of Disaster Prevention and Mitigation Engineering, 2019, 39(5): 691-699(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201905001.htm
    [66]
    Cao D F, Shi B, Zhu H H, et al. A soil moisture estimation method using actively heated fiber Bragg grating sensors[J]. Engineering Geology, 2018, 242: S0013795217303770. https://www.sciencedirect.com/science/article/pii/S0013795217303770
    [67]
    刘喜凤, 朱鸿鹄, 王家琛, 等. 非饱和土水分迁移感测的主动加热光纤光栅法试验研究[J]. 岩土工程学报, 2022, 44(8): 1443-1452. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202208009.htm

    Liu X F, Zhu H H, Wang J C, et al. Experimental study on actively heated fiber Bragg grating method for sensing seepage in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1443-1452(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202208009.htm
    [68]
    刘喜凤, 朱鸿鹄, 王家琛, 等. 基于神经网络的改进型土壤水分光纤感测技术研究[J]. 岩土工程学报, 2022, 44(9): 1721-1729. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202209017.htm

    Liu X F, Zhu H H, Wang J C, et al. Improved fiber optic sensing technology of soil moisture based on neural network[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1721-1729(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202209017.htm
    [69]
    Liu X F, Zhu H H, Wu B, et al. Artificial intelligence-based fiber optic sensing for soil moisture measurement with different cover conditions[J]. Measurement, 2023, 206: 112312.
    [70]
    朱鸿鹄, 吴冰, 曹鼎峰, 等. 原位冻土冰水组分辨识与动态示踪的光电测试系统和方法: 202210581249.0[P]. 2022-05-26.

    Zhu H H, Wu B, Cao D F, et al. Photoelectric measurement system and method for in-situ ice-water content identification and dynamic tracing: 202210581249.0[P]. 2022-05-26(in Chinese).
    [71]
    Han Z J, Cao D F, Zhu H H, et al. A field test to investigate spatiotemporal distribution of soil moisture under different cropland covers in the semiarid Loess Plateau of China[J]. Paddy Water Environment, 2022, 20: 339-353.
    [72]
    郭君仪, 孙梦雅, 施斌, 等. 不同环境温度下土体含水率主动加热光纤法监测试验研究[J]. 岩土力学, 2020, 41(12): 4137-4144. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202012034.htm

    Guo J Y, Sun M Y, Shi B, et al. Experimental study of water content in soils monitored with active heated fiber optic method at different ambient temperatures[J]. Rock and Soil Mechanics, 2020, 41(12): 4137-4144(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202012034.htm
    [73]
    Zhu H H, Wang J C, Reddy N G, et al. Monitoring water infiltration of capillary barrier with actively heated fiber Bragg gratings[J]. Environmental Geotechnics, 2022(in press).
    [74]
    Cao D F, Zhu H H, Wu B, et al. Investigating soil temperature and moisture profiles under different land covers using actively heated fiber Bragg grating sensors[J]. Engineering Geology, 2021, 290: 106197.
    [75]
    Sun M Y, Shi B, Zhang C C, et al. Quasi-distributed fiber-optic in-situ monitoring technology for large-scale measurement of soil water content and its application[J]. Engineering Geology, 2021, 294: 106373.
    [76]
    李杰, 朱鸿鹄, 吴冰, 等. 下蜀土降雨入渗原位监测及渗透系数估算[J]. 工程地质学报, 2023(出版中).

    Li J, Zhu H H, Wu B, et al. Fiber optic monitoring of rainfall infiltration in Xiashu soil and permeability coefficient estimation[J]. Journal of Engineering Geology, 2023(in press)(in Chinese with English abstract).
    [77]
    吴冰, 朱鸿鹄, 曹鼎峰, 等. 基于光纤光栅的冻土含冰量监测可行性试验研究[J]. 岩土工程学报, 2019, 41(12): 2323-2330. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912025.htm

    Wu B, Zhu H H, Cao D F, et al. Feasibility study on FBG-based monitoring method for ice content in frozen soil[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2323-2330(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912025.htm
    [78]
    吴冰, 朱鸿鹄, 曹鼎峰, 等. 基于主动加热光纤法的冻土相变温度场特征分析[J]. 工程地质学报, 2019, 27(5): 1092-1099. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201905020.htm

    Wu B, Zhu H H, Cao D F, et al. Investigation of phase change temperature field in frozen soil based on actively heated fiber optics method[J]. Journal of Engineering Geology, 2019, 27(5): 1092-1099(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201905020.htm
    [79]
    Wu B, Zhu H H, Cao D F, et al. Feasibility study on ice content measurement of frozen soil using actively heated FBG sensors[J]. Cold Regions Science and Technology, 2021, 189: 103332.
    [80]
    Zhu H H, Wu B, Cao D F, et al. Monitoring soil moisture and temperature distribution in seasonally frozen ground with fiber optic sensors[C]//Anon. Proceedings of 11th Conference of Asian Rock Mechanics Society, IOP Conf. Series: Earth and Environmental Science, 2021, 861: 042042.
    [81]
    Cao D F, Zhu H H, Wu B, et al. Investigating temperature and moisture profiles of seasonally frozen soil under different land covers using actively heated fiber Bragg grating sensors[J]. Engineering Geology, 2021, 290: 106197.
    [82]
    董文文, 朱鸿鹄, 孙义杰, 等. 边坡变形监测技术现状及新进展[J]. 工程地质学报, 2016, 24(6), 1088-1095. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201606007.htm

    Dong W W, Zhu H H, Sun Y J, et al. Current status and new progress on slope deformation monitoring technologies[J]. Journal of Engineering Geology, 2016, 24(6): 1088-1095(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201606007.htm
    [83]
    朱鸿鹄, 施斌, 严珺凡, 等. 基于分布式光纤应变感测的边坡模型试验研究[J]. 岩石力学与工程学报, 2013, 32(4): 821-828. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201304023.htm

    Zhu H H, Shi B, Yan J F, et al. Physical model testing of slope stability based on distributed fiber-optic strain sensing technology[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(4): 821-828(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201304023.htm
    [84]
    Zhu H H, Shi B, Yan J F, et al. Investigation of the evolutionary process of a reinforced model slope using a fiber-optic monitoring network[J]. Engineering Geology, 2015, 186: 34-43. https://www.sciencedirect.com/science/article/pii/S0013795214002671
    [85]
    Zhu H H, Wang Z Y, Shi B, et al. Feasibility study of strain based stability evaluation of locally loaded slopes: Insights from physical and numerical modeling[J]. Engineering Geology, 2016, 208: 39-50. https://www.sciencedirect.com/science/article/pii/S001379521630103X
    [86]
    Song Z P, Shi B, Juang H, et al. Soil strain-field and stability analysis of cut slope based on optical fiber measurement[J]. Bulletin of Engineering Geology and the Environment, 2017, 76(3): 937-946. doi: 10.1007/s10064-016-0904-4
    [87]
    Iten M. Novel applications of distributed fiber-optic sensing in geotechnical engineering[D]. Zurich: Swiss Federal Institute of Technology in Zurich, 2011.
    [88]
    Picarelli L, Damiano E, Greco R, et al. Performance of slope behavior indicators in unsaturated pyroclastic soils[J]. Journal of Mountain Science, 2015, 12(6): 1434-1447. doi: 10.1007/s11629-014-3104-3
    [89]
    Wang B J, Li K, Shi B, et al. Test on application of distributed fiber optic sensing technique into soil slope monitoring[J]. Landslides, 2009, 6(1): 61-68. doi: 10.1007/s10346-008-0139-y
    [90]
    佘骏宽, 朱鸿鹄, 张诚成, 等. 传感光纤-砂土界面力学性质的试验研究[J]. 工程地质学报, 2014, 22(5): 855-860. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201405014.htm

    She J K, Zhu H H, Zhang C C, et al. Experiment study on mechanical properties od interface between sensing optical fiber and sand[J]. Journal of Engineering Geology, 2014, 22(5): 855-860(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201405014.htm
    [91]
    Zhu H H, She J K, Zhang C C, et al. Experimental study on pullout performance of sensing optical fibers in compacted sand[J]. Measurement, 2015, 73: 284-294. https://www.sciencedirect.com/science/article/pii/S0263224115002924
    [92]
    Zhang C C, Zhu H H, Shi B, et al. Interfacial characterization of soil-embedded optical fiber for ground deformation measurement[J]. Smart Material Structures, 2014, 23: 095022. https://www.researchgate.net/publication/264561148_Interfacial_characterization_of_soil-embedded_optical_fiber_for_ground_deformation_measurement
    [93]
    Zhang C C, Zhu H H, She J K, et al. Quantitative evaluation of optical fiber/soil interfacial behavior and its implications for sensing fiber selection[J]. IEEE Sensors Journal, 2015, 15(5): 3059-3067.
    [94]
    陈冬冬, 朱鸿鹄, 张诚成, 等. 考虑埋入长度效应的应变传感光纤-土体界面特性试验研究[J]. 工程地质学报, 2017, 25(4): 1027-1034. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201704017.htm

    Chen D D, Zhu H H, Zhang C C, et al. Experimental study on strain sensing optical fiber-soil interfacial properties considering influence of embedment length[J]. Journal of Engineering Geology, 2017, 25(4): 1027-1034(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201704017.htm
    [95]
    Zhang C C, Zhu H H, Shi B. Role of the interface between distributed fibre optic strain sensor and soil in ground deformation measurement[R]. [S. l. ]: [s. n. ], 2016, 6: 36469.
    [96]
    Zhang C C, Zhu H H, Shi B, et al. Performance evaluation of soil-embedded plastic optical fiber sensors for geotechnical monitoring[J]. Smart Structures and Systems, 2016, 17(2): 297-311.
    [97]
    李焕强, 孙红月, 刘永莉, 等. 光纤传感技术在边坡模型试验中的应用[J]. 岩石力学与工程学报, 2008, 27(8): 1703-1708. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200808024.htm

    Li H Q, Sun H Y, Liu Y L, et al. Application of optical fiber sensing technology to slope model test[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(8): 1703-1708(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200808024.htm
    [98]
    Cheng G, Shi B, Zhu H H, et al. A field study on distributed fiber optic deformation monitoring of overlying strata during coal mining[J]. Journal of Civil Structural Health Monitoring, 2015, 5(5): 553-562. doi: 10.1007/s13349-015-0135-6
    [99]
    Wu J, Jiang H, Su J, et al. Application of distributed fiber optic sensing technique in land subsidence monitoring[J]. Journal of Civil Structural Health Monitoring, 2015, 5(5): 587-597. doi: 10.1007/s13349-015-0133-8
    [100]
    Zhang C C, Zhu H H, Chen D D, et al. Feasibility study of anchored fiber-optic strain-sensing arrays for monitoring soil deformation beneath model foundation[J]. Geotechnical Testing Journal, 2019, 42(4): 966-984.
    [101]
    Zhang C C, Zhu H H, Liu S P, el at. Quantifying progressive failure of micro-anchored fiber optic cable-sand interface via high-resolution distributed strain sensing[J]. Canadian Geotechnical Journal, 2020, 57(6): 871-881.
    [102]
    李飞, 朱鸿鹄, 张诚成, 等. 地基变形光纤光栅监测可行性的试验研究[J]. 浙江大学学报: 工学版, 2017, 51(1): 204-211. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201701026.htm

    Li F, Zhu H H, Zhang C C, et al. Experimental study on feasibility of fiber Bragg grating-based foundation deformation monitoring[J]. Journal of Zhejiang University: Engineering Science, 2017, 51(1): 204-211(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201701026.htm
    [103]
    Suo W, Lu Y, Shi B, et al. Development and application of a fixed-point fiber-optic sensing cable for ground fissure monitoring[J]. Journal of Civil Structural Health Monitoring, 2016, 6(4): 715-724. doi: 10.1007/s13349-016-0192-5
    [104]
    王德洋, 朱鸿鹄, 吴海颖, 等. 地层塌陷作用下埋地管道光纤监测试验研究[J]. 岩土工程学报, 2020, 42(6): 1125-1131. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006020.htm

    Wang D Y, Zhu H H, Wu H Y, et al. Experimental study on buried pipeline instrumented with fiber optic sensors under ground collapse[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1125-1131(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006020.htm
    [105]
    韦超, 朱鸿鹄, 高宇新, 等. 地面塌陷分布式光纤感测模型试验研究[J]. 岩土力学, 2022, 43(9): 2443-2456. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202209011.htm

    Wei C, Zhu H H, Gao Y X, et al. Model test study of ground collapse using distributed fiber optic sensing[J]. Rock and Soil Mechanics, 2022, 43(9): 2443-2456(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202209011.htm
    [106]
    Iten M, Puzrin A M, Schmid A. Landslide monitoring using a road-embedded optical fiber sensor[C]//Ecke W, Peters K J, Meyendorf N G. Proc. of SPIE, 6933, Smart Sensor Phenomena, Technology, Networks, and Systems. San Diego, California, USA: SPIE, 2008: 693315-693319.
    [107]
    李博, 张丹, 王嘉诚, 等. 基于传感光缆应变分布的土体剪切变形计算方法[J]. 工程地质学报, 2015, 23(增刊1): 767-772. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-GCDZ201508002118.htm

    Li B, Zhang D, Wang J C, et al. Calculation method for soil shear deformation based on strain distribution of sensing fiber[J]. Journal of Engineering Geology, 2015, 23(S1): 767-772(in Chinese with English abstract). https://cpfd.cnki.com.cn/Article/CPFDTOTAL-GCDZ201508002118.htm
    [108]
    Zhang C C, Zhu H H, Liu S P, et al. A kinematic method for calculating shear displacements of landslides using distributed fiber optic strain measurements[J]. Engineering Geology, 2018, 234: 83-96. https://www.sciencedirect.com/science/article/pii/S0013795217308475
    [109]
    Wu H, Zhu H H, Zhang C C, et al. Strain integration-based soil shear displacement measurement using high-resolution strain sensing technology[J]. Measurement, 2020, 166: 108210.
    [110]
    李长冬, 龙晶晶, 姜茜慧, 等. 水库滑坡成因机制研究进展与展望[J]. 地质科技通报, 2020, 39(1): 67-77. doi: 10.19509/j.cnki.dzkq.2020.0108

    Li C D, Long J J, Jiang X H, et al. Advance and prospect of formation mechanism for reservoir landslides[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 67-77(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0108
    [111]
    Yin Y P, Huang B L, Wang W P, et al. Reservoir-induced landslides and risk control in Three Gorges Project on Yangtze River, China[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8: 577-595. https://www.sciencedirect.com/science/article/pii/S1674775516301111
    [112]
    殷跃平. 长江三峡库区移民迁建新址重大地质灾害及防治研究[M]. 北京: 地质出版社, 2004.

    Yin Y P. Study on major geological hazards and their prevention in the relocation site of the Three Gorges Reservoir area of the Yangtze River[M]. Beijing: Geological Publishing House, 2004(in Chinese).
    [113]
    Wei K, Ouyang C J, Duan H T, et al. Reflections on the catastrophic 2020 Yangtze River Basin flooding in southern China[J]. The Innovation, 2020, 1(2): 100038. http://awsqikan.cqvip.com/Qikan/Article/Detail?id=7104967212
    [114]
    Zeni L, Picarelli L, Avolio B, et al. Brillouin optical time-domain analysis for geotechnical monitoring[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7(4): 458-462. https://www.sciencedirect.com/science/article/pii/S1674775515000517
    [115]
    Kogure T, Okuda Y. Monitoring the vertical distribution of rainfall-induced strain changes in a landslide measured by distributed fiber optic sensing with Rayleigh backscattering[J]. Geophysical Research Letters, 2018, 45: 4033-4040. doi: 10.1029/2018GL077607
    [116]
    Zhang J, Huang H W. Risk assessment of slope failure considering multiple slip surfaces[J]. Computers & Geotechnics, 2016, 74: 188-195. https://www.sciencedirect.com/science/article/pii/S0266352X16000203
    [117]
    Wang J G, Schweizer D, Liu Q B, et al. Three-dimensional landslide evolution model at the Yangtze River[J]. Engineering Geology, 2021, 292: 106275.
    [118]
    Sang H W, Zhang D, Gao Y L, et al. Strain distribution based geometric models for characterizing the deformation of a sliding zone[J]. Engineering Geology, 2019, 263: 105300.
    [119]
    Lacroix P, Handwerger A L, Bièvre G. Life and death of slow-moving landslides[J]. Nature Reviews Earth & Environment, 2020, 1: 404-419.
    [120]
    何成, 唐辉明, 申培武, 等. 应变软化边坡渐进破坏模式及稳定性可靠度[J]. 地球科学, 2021, 46(2): 697-707. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202102024.htm

    He C, Tang H M, Shen P W, el at. Progressive failure mode and stability reliability of strain-softening slope[J]. Earth Science, 2021, 46(2): 697-707(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202102024.htm
    [121]
    Hugentobler M, Loew S, Aaron J, et al. Borehole monitoring of thermo-hydro-mechanical rock slope processes adjacent to an actively retreating glacier[J]. Geomorphology, 2020, 362: 107190.
    [122]
    Scaringi G, Hu W, Xu Q, et al. Shear-rate-dependent behavior of clayey bimaterial interfaces at landslide stress levels[J]. Geophysical Research Letters, 2018, 45: 766-777. doi: 10.1002/2017GL076214
    [123]
    Seguí C, Veveakis M. Continuous assessment of landslides by measuring their basal temperature[J]. Landslides, 2021, 18: 3953-3961. doi: 10.1186/2193-1801-2-523
    [124]
    Shibasaki T, Matsuura S, Okamoto T. Experimental evidence for shallow, slow-moving landslides activated by a decrease in ground temperature[J]. Geophysical Research Letters, 2016, 43: 6975-6984. doi: 10.1002/2016GL069604
    [125]
    Zhang Y, Xue Z Q. Deformation-based monitoring of water migration in rocks using distributed fiber optic strain sensing: A laboratory study[J]. Water Resources Research, 2019, 55: 8368-8383.
    [126]
    Iverson R M. Landslide triggering by rain infiltration[J]. Water Resources Research, 2000, 36(7): 1897-1910.
    [127]
    Iverson R M, Denlinger R P. Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory[J]. Journal of Geophysical Research, 2001, 106(B1): 537-555. doi: 10.1029/2000JB900329
    [128]
    Habib P. Production of gaseous pore pressure during rockslide[J]. Rock Mechanics and Rock Engineering, 1975, 7(4): 193-197. doi: 10.1007/BF01246865
    [129]
    Voight B, Faust C. Frictional heat and strength loss in some rapid landslides[J]. Geotechnique, 1982, 32: 43-54. doi: 10.1680/geot.1982.32.1.43
    [130]
    Vardoulakis I. Catastrophic landslides due to frictional heating of the failure plane[J]. Mechanics of Cohesive-Frictional Materials, 2000, 5(6): 443-467.
    [131]
    Vardoulakis I. Dynamic thermo-poro-mechanical analysis of catastrophic landslides[J]. Geotechnique, 2002, 52(3): 157-171. doi: 10.1680/geot.2002.52.3.157
    [132]
    张常亮, 王阿丹, 邢鲜丽, 等. 侵蚀作用诱发黄土滑坡的机制研究[J]. 岩土力学, 2012, 33(5): 1585-1592. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201205047.htm

    Zhang C L, Wang A D, Xing X L, et al. Research on mechanism of loess landslides caused by erosion[J]. Rock and Soil Mechanics, 2012, 33(5): 1585-1592(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201205047.htm
    [133]
    Goren L, Aharonov E. Long runout landslides: The role of frictional heating and hydraulic diffusivity[J]. Geophysical Research Letters, 2007, 34: L07802. doi: 10.1029/2006GL028895
    [134]
    Goren L, Aharonov E. On the stability of landslides: A thermo-poro-elastic approach[J]. Earth and Planetary Science Letters, 2009, 277(3): 365-372. https://www.sciencedirect.com/science/article/pii/S0012821X08007061
    [135]
    Sidder A. Fiber optics open new frontier for landslide monitoring[J]. Eos, 2022: 103.
    [136]
    朱鸿鹄, 王佳, 李厚芝, 等. 基于数据挖掘的三峡库区特大滑坡变形关联规则研究[J]. 工程地质学报, 2022, 30(5): 1517-1527. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202205013.htm

    Zhu H H, Wang J, Li H Z, et al. Association rule analysis for giant landslide deformation of the Three Gorges Reservoir region based on data mining[J]. Journal of Engineering Geology, 2022, 30(5): 1517-1527(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202205013.htm
    [137]
    王佳, 朱鸿鹄, 叶霄, 等. 考虑时滞效应的库区滑坡位移预测: 以新铺滑坡为例[J]. 工程地质学报, 2022, 30(5): 1609-1619. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202205021.htm

    Wang J, Zhu H H, Ye X, et al. Prediction of reservoir landslide displacements considering time lag effect: A case study of the Xinpu landslide in the Three Gorges Reservoir area, China[J]. Journal of Engineering Geology, 2022, 30(5): 1609-1619(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202205021.htm
    [138]
    许强. 对滑坡监测预警相关问题的认识与思考[J]. 工程地质学报, 2020, 28(2): 360-374. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202002017.htm

    Xu Q. Understanding the landslide monitoring and early warning: Consideration to practical issues[J]. Journal of Engineering Geology, 2020, 28(2): 360-374(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202002017.htm
    [139]
    许强, 黄学斌, 汤明高, 等. 三峡库区滑坡灾害预警预报手册[M]. 北京: 地质出版社, 2014.

    Xu Q, Huang X B, Tang M G, et al. Handbook for early warning and prediction of landslide hazards in the Three Gorges Reservoir area[M]. Beijing: Geological Publishing House, 2014(in Chinese).
    [140]
    许强, 汤明高, 黄润秋, 等. 大型滑坡监测预警与应急处置[M]. 北京: 科学出版社, 2015.

    Xu Q, Tang M G, Huang R Q, et al. Monitoring, early warning and emergency disposal of large landslide[M]. Beijing: Science Press, 2015(in Chinese).
    [141]
    Zhu H H, Shi B, Yan J F, et al. Fiber Bragg grating-based performance monitoring of a slope model subjected to seepage[J]. Smart Materials and Structures, 2014, 23: 095027.
    [142]
    Liao K, Zhang W, Zhu H H, et al. Forecasting reservoir-induced landslide deformation using genetic algorithm enhanced multivariate Taylor series Kalman filter[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(3): 1-19.
    [143]
    Zhang N, Zhang W, Liao K, et al. Deformation prediction of reservoir landslides based on a Bayesian optimized random forest-combined Kalman filter[J]. Environmental Earth Sciences, 2022, 81(7): 1-14.
    [144]
    Nitzsche K, Herle I. Strain-dependent slope stability[J]. Acta Geotechnica, 2020, 15: 3111-3119.
    [145]
    Zhang W, Xiao R, Shi B, et al. Forecasting slope deformation field using correlated grey model updated with time correction factor and background value optimization[J]. Engineering Geology, 2019, 260: 105215.
    [146]
    Zhang L, Shi B, Zhu H, et al. PSO-SVM-based deep displacement prediction of Majiagou landslide considering the deformation hysteresis effect[J]. Landslides, 2021, 18: 179-193.
    [147]
    黄润秋, 许强. 斜坡失稳时间的协同预测模型[J]. 山地研究, 1997, 15(1): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA199701001.htm

    Huang R Q, Xu Q. Synergetic prediction model of slope instability[J]. Journal of Mountain Research, 1997, 15(1): 7-12(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA199701001.htm
    [148]
    秦四清, 张倬元, 王士天. 顺层斜坡失稳的突变理论分析[J]. 中国地质灾害与防治学报, 1993, 4(1): 40-47, 57. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH199301005.htm

    Qing S Q, Zhang Z Y, Wang S T. Research on losing stability of the consequent slope by the catastrophe theory[J]. Chinese Journal of Geological Hazard and Control, 1993, 4(1): 40-47, 57(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH199301005.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(712) PDF Downloads(215) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return