Citation: | Han Youming, Du Lei, Zhu Xinghua, Chen Lixia, Yu Yuting, Chen Qin. Numerical simulation of masonry building deformation and failure characteristics in landslide tension areas[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 55-62. doi: 10.19509/j.cnki.dzkq.tb20220718 |
To ensure the safety of life and property of residents on landslides and reveal the deformation and failure law of masonry buildings on landslides, it is necessary to carry out a simulation study on the deformation and failure process of masonry buildings under the action of landslide deformation. A refined model of a masonry building was established based on the contact separation modeling method in ABAQUS, and the viscous contact interface was used to simulate the effect of mortar in the wall. Comparing the results of the numerical simulation with the physical model test results, the main conclusion is as follows: through the comparison of macroscopic deformation characteristics and microscopic stress and strain data obtained from physical and numerical model tests, the load-strain curve of the numerical model test agrees well with that of the physical model test, and their strain clouds are consistent, proving the validity of the numerical simulation method. The law of crack propagation and strain distribution of building walls in landslide tension areas is revealed, which can provide a basis for the protection design of masonry buildings in landslide tension areas.
[1] |
桂蕾. 三峡库区万州区滑坡发育规律及风险研究[D]. 武汉: 中国地质大学(武汉), 2014.
Gui L. Research on landside development regularities and risk in Wanzhou district, Three Gorges Reservoir[D]. Wuhan: China University of Geosciences(Wuhan), 2014(in Chinese with English abstract).
|
[2] |
连志鹏, 徐勇, 付圣, 等. 采用多模型融合方法评价滑坡灾害易发性: 以湖北省五峰县为例[J]. 地质科技通报, 2020, 39(3): 178-186. doi: 10.19509/j.cnki.dzkq.2020.0319
Lian Z P, Xu Y, Fu S, et al. Landside susceptibility assessment based on multi-model fusion method: A case study in Wufeng Country, Hubei Province[J]. Bulletin of Geological Science and Technology, 2020, 39(3): 178-186(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2020.0319
|
[3] |
余玉婷, 桂蕾, 朱兴华, 等. 滑坡不同作用模式下房屋基础变形特征[J]. 地质科技通报, 2021, 40(6): 236-245. doi: 10.19509/j.cnki.dzkq.2021.0623
Yu Y T, Gui L, Zhu X H, et al. Deformation characteristics of building foundation under different action modes of landslide[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 236-245(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0623
|
[4] |
彭双麒, 柯灵, 郑体, 等. 基于图像识别的碎屑流颗粒分布特征及碎屑流与房屋相互作用探究[J]. 地质科技通报, 2021, 40(6): 226-235. doi: 10.19509/j.cnki.dzkq.2021.0622
Peng S Q, Ke L, Zheng T, et al. Particle distribution characteristics of rock avalanche and the interaction between rock avalanche and houses based on image recognition[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 226-235(in Chinese with English abstract). doi: 10.19509/j.cnki.dzkq.2021.0622
|
[5] |
张先扬, 袁广林. 采动区砌体结构抗变形实验[J]. 黑龙江科技大学学报, 2008, 18(3): 176-179. https://www.cnki.com.cn/Article/CJFDTOTAL-HLJI200803004.htm
Zhang X Y, Yuan G L. Experiment of anti-deformation of masonry structure in mining subsidence area[J]. Journal of Heilongjiang University of Science and Technology, 2008, 18(3): 176-179(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HLJI200803004.htm
|
[6] |
Yamin L E, Phillips C A, Reyes J C, et al. Seismic behavior and rehabilitation alternatives for adobe and rammed earth buildings[C]//Anon. 13th World Conference on Earthquake Engineering. BC Canada: Vancouver, 2004: 1-6.
|
[7] |
Calderón S, Milani G, Sandoval C. Simplified micro-modeling of partially-grouted reinforced masonry shear walls with bed-joint reinforcement: Implementation and validation[J]. Engineering Structures, 2021, 234: 111987. doi: 10.1016/j.engstruct.2021.111987
|
[8] |
李佳. 基于数值模拟的砌体结构倒塌影响因素分析及抗倒塌措施初探[D]. 重庆: 重庆大学, 2013.
Li J. The collapsed factors analysis of masonry structures and preliminary exploration about anti-collapse based on numerical simulation[D]. Chongqing: Chongqing University, 2013(in Chinese with English abstract).
|
[9] |
丁瑞彬. 砌体精细化建模方法及砌体拟静力试验的数值模拟分析[D]. 太原: 太原理工大学, 2016.
Ding R B. Detailed modeling method on masonry and quasi-static experiment numerical simulation analysis of masonry[D]. Taiyuan: Taiyuan University of Technology, 2016(in Chinese with English abstract).
|
[10] |
Abdulla K F, Cunningham L S, Gillie M. Simulating masonry wall behaviour using a simplified micro-model approach[J]. Engineering Structures, 2017, 151: 349-365. doi: 10.1016/j.engstruct.2017.08.021
|
[11] |
郭玉荣, 张楠. 近距离爆炸荷载作用下砌体墙动态响应及破坏历程的数值模拟[J]. 湖南大学学报: 自然科学版, 2016, 43(1): 61-67. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201601008.htm
Guo Y R, Zhang N. Numerical simulation of masonry wall dynamic response and failure process under close range balst load[J]. Journal of Hunan University: Natural Sciences, 2016, 43(1): 61-67(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201601008.htm
|
[12] |
韩笑. 燃气爆炸荷载下砖砌墙体的动力响应研究[D]. 西安: 长安大学, 2012.
Han X. The dynamic response of brick masonry wall subjected to gas explosion load[D]. Xi'an: Chang'an University, 2012(in Chinese with English abstract).
|
[13] |
郑颖人, 陈祖煜, 王恭先, 等. 边坡与滑坡工程治理[M]. 北京: 人民交通出版社, 2010.
Zhen Y R, Chen Z Y, Wang G X, et al. Engineering treatment of slop & landslide[M]. Beijing: China Communications Press, 2010(in Chinese).
|
[14] |
陈元勇, 王富强. 滑坡变形破坏过程中的受力特征分析[J]. 西部探矿工程, 2020, 32(11): 22-23, 29. https://www.cnki.com.cn/Article/CJFDTOTAL-XBTK202011008.htm
Chen Y Y, Wang F Q. Analysis of force characteristics in landslide deformation and failure process[J]. West-China Exploration Engineering, 2020, 32(11): 22-23, 29(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-XBTK202011008.htm
|
[15] |
许强, 汤明高, 徐开祥, 等. 滑坡时空演化规律及预警预报研究[J]. 岩石力学与工程学报, 2008, 27(6): 1104-1112. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200806005.htm
Xu Q, Tang M G, Xu K X, et al. Research on space-time evolution laws and early warning-prediction of landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(6): 1104-1112(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200806005.htm
|
[16] |
Lü W R, Wang M, Liu X J. Numerical analysis of masonry under compression via micro-model[J]. Advanced Materials Research, 2011, 243/249: 1360-1365.
|
[17] |
Feba S T, Kuriakose B. Nonlinear finite element analysis of unreinforced masonry walls[J]. Applied Mechanics and Materials, 2017, 857: 142-147. http://www.onacademic.com/detail/journal_1000039769832610_1476.html
|
[18] |
万蕾. 基于内聚力模型和三维离散元法沥青混合料劈裂试验研究[D]. 杭州: 浙江大学, 2016.
Wang L. Study on asphalt mixture splitting test cohesive zone model and tree-dimension discrete element method[D]. Hangzhou: Zhejiang University, 2016(in Chinese with English abstract).
|
[19] |
蒋济同, 周新智. 基于分离式建模的砌体墙力学性能有限元分析参数探讨[J]. 建筑结构, 2019, 49(增刊1): 640-644. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG2019S1133.htm
Jiang J T, Zhou X Z. Discussion on parameters in finite element analysis of mechanical properties of masonry wall based on separation modeling[J]. Building Structure, 2019, 49(S1): 640-644(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG2019S1133.htm
|
[20] |
李聪, 朱杰兵, 汪斌, 等. 滑坡不同变形阶段演化规律与变形速率预警判据研究[J]. 岩石力学与工程学报, 2016, 35(7): 1407-1414. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201607011.htm
Li C, Zhu J B, Wang B, et al. Critical deformation velocity of lamdslide in different deformation phases[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(7): 1407-1414(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201607011.htm
|
[21] |
许强, 曾裕平, 钱江澎, 等. 一种改进的切线角及对应的滑坡预警判据[J]. 地质通报, 2009, 28(4): 501-505. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200904013.htm
Xu Q, Zeng Y P, Qian J P, et al. Study on improved tangential angle and the corresponding landslide pre-warning criteria[J]. Geological Bulletin of China, 2009, 28(4): 501-505(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200904013.htm
|
[1] | CAO Wengeng,PAN Deng,XU Zhijie,et al. Landslide disaster vulnerability mapping study in Henan Province: Comparison of different machine learning models[J]. Bulletin of Geological Science and Technology,2025,44(1):101-111. doi: 10.19509/j.cnki.dzkq.tb20230338. |
[2] | The characteristics、disaster mechanism、prevention and treatment and enlightenment of airport high fill landslide in mountainous area—Take Panzhihua Airport as an example[J]. Bulletin of Geological Science and Technology. doi: 10.19509/j.cnki.dzkq.tb20240216 |
[3] | WU Di, LIANG Taiming, WU Jing, WU Jianjian, YI Yang, LOU Wanpeng. Design and experiment of landslide monitoring algorithm based on MEMS sensor[J]. Bulletin of Geological Science and Technology, 2024, 43(6): 39-50. doi: 10.19509/j.cnki.dzkq.tb20240214 |
[4] | Jing Shaodong, Xu Guohui, Wu Shangbin, Liu Xiaozhong, Li Zhihua, Liu Qianling, Liu Kangneng, Zhang Bin. Assessment of the water-sealed safety of underground crude oil storage based on a three-dimensional refined numerical model[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 1-11. doi: 10.19509/j.cnki.dzkq.tb20220097 |
[5] | Ding Yaoxuan, Gong Wenping, Cheng Zhan, Tian Shan, Zhao Chao, Chen Chen. Model tests of the vertical ground deformation measurement of landslide based on multiple UAV images and its application[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 267-278. doi: 10.19509/j.cnki.dzkq.2022.0137 |
[6] | Hu Cheng, Chen Gang, Cao Mengxiong, Tang Liansong, Zheng Ke, Wang Jigang. A case study on water sealing efficieny of groundwater storage caverns using discrete fracture network method and flow numerical simulation[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 119-126, 136. doi: 10.19509/j.cnki.dzkq.2022.0029 |
[7] | Liu Hengwei, Xiao Peng, Dou Bin, Tian Hong, Zheng Jun. Numerical simulation of influence of reservoir characteristics on heating process of enhanced geothermal system of horizontal well multi fractures[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 341-348. doi: 10.19509/j.cnki.dzkq.2022.0081 |
[8] | Yang Dengfang, Hu Xinli, Xu Chu, Wang Qiang, Niu Lifei, Zhang Jiehao. Deformation and evolution characteristics of landslides with multiple sliding zones based on physical model test[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 300-308. doi: 10.19509/j.cnki.dzkq.2021.0069 |
[9] | Feng Yuehua, Luo Xiaojuan, Li Junliang, Cao Zehua, Yao Wenmin, Song Chengbin. Physical model tests on the interaction of h-type stabilizing piles and landslides in bedrock with upper hard and lower weak strata[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 242-252. doi: 10.19509/j.cnki.dzkq.2022.0229 |
[10] | Tang Yating, Tan Jie, Li Changdong, Li Bingchen, Zhou Wenjuan. Preliminary study on the initiation mechanism of hydrodynamic-driven bedding rock landslides based on physical model tests[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 137-148. doi: 10.19509/j.cnki.dzkq.2022.0202 |
[11] | Wang Guihua, Li Changdong, He Xin, Zhang Yongquan, Yao Wenmin, Song Chengbin, Zhang Huawei. Physical model test on the effect of different anchoring methods on the mechanical and deformation characteristics of anchored slide-resistant piles[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 262-277. doi: 10.19509/j.cnki.dzkq.2022.0151 |
[12] | Dong Longlong, Mei Guoxiong, Wu Wenbing, Wang Lixing, Ruan Hengfeng. Numerical simulation of working characteristics of energy pile group under thermo-mechanical coupling[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 326-334. doi: 10.19509/j.cnki.dzkq.2021.0632 |
[13] | Wang Xinguang, Zhang Hui, Chen Zhihe, Tian Dongmei, Li Wenrui, Zhang Dongyue, Cao Licheng. Numerical simulation of sedimentation in the Central Canyon of Lingshui area, Qiongdongnan Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 42-53. doi: 10.19509/j.cnki.dzkq.2021.0026 |
[14] | Zhang Jiehao, Hu Xinli, Xu Chu, Niu Lifei, Yang Dengfang. Mechanical characteristics of anti-slide pile of multi-layer sliding zone accumulation layer based on physical model test[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 171-178. doi: 10.19509/j.cnki.dzkq.2021.0410 |
[15] | Li Xiao, Wu Liming, Wang Bingxian, Hu Qiuyuan, Dong Dawei. Numerical simulation of tectonic stress field and prediction of fracture target in the Longmaxi Formation, southeastern Chongqing[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 24-31. doi: 10.19509/j.cnki.dzkq.2021.0603 |
[16] | Chen Jinlong, Luo Wenxing, Dou Bin, Zhou Yang, Ning Wentao. Numerical simulation of geothermal field in a three-dimensional multi-fractured geological model of Zhuolu Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 22-33. doi: 10.19509/j.cnki.dzkq.2021.0317 |
[17] | Yu Yuting, Gui Lei, Zhu Xinghua, Han Youming. Deformation characteristics of building foundation under different action modes of landslide[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 236-245. doi: 10.19509/j.cnki.dzkq.2021.0623 |
[18] | Hu Tao, Fan Xin, Wang Shuo, Guo Zizheng, Liu Aichang, Huang Faming. Landslide susceptibility evaluation of Sinan County using logistics regression model and 3S technology[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 113-121. doi: 10.19509/j.cnki.dzkq.2020.0212 |
[19] | Wang Xuan, Hu Xinli, Zhou Chang, Li Lanxing. Model test on the displacement field characteristics of the landslide stabilizing piles[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 103-108. doi: 10.19509/j.cnki.dzkq.2020.0413 |
[20] | Zhu Dongxue, Xu Qiang, Li Songlin. Genetic types and geological features of large scale and extra-large scale layered landslides in the Three Gorges Reservoir area[J]. Bulletin of Geological Science and Technology, 2020, 39(2): 158-167. doi: 10.19509/j.cnki.dzkq.2020.0217 |
1. | 周少伟,边小卫,李卫波,马园园,李菲. 考虑降雨条件陕北Q_2黄土斜坡稳定性的非线性劣化研究. 地质科技通报. 2024(03): 218-226 . ![]() | |
2. | 谢强,李雨桐,徐先宇,孙伟宸,陈昱成,班宇鑫,傅翔. 滑坡诱发农村山区砖混结构变形及演化规律研究. 西安建筑科技大学学报(自然科学版). 2024(02): 166-175 . ![]() |