Volume 43 Issue 4
Jul.  2024
Turn off MathJax
Article Contents
CHENG Jinbo, XIA Lu, YU Qingchun. Determination method of fracture aperture based on three-dimensional fracture network simulation and water injection tests[J]. Bulletin of Geological Science and Technology, 2024, 43(4): 262-272. doi: 10.19509/j.cnki.dzkq.tb20230128
Citation: CHENG Jinbo, XIA Lu, YU Qingchun. Determination method of fracture aperture based on three-dimensional fracture network simulation and water injection tests[J]. Bulletin of Geological Science and Technology, 2024, 43(4): 262-272. doi: 10.19509/j.cnki.dzkq.tb20230128

Determination method of fracture aperture based on three-dimensional fracture network simulation and water injection tests

doi: 10.19509/j.cnki.dzkq.tb20230128
More Information
  • Author Bio:

    CHENG Jinbo, E-mail: cjb@cugb.edu.cn

  • Corresponding author: YU Qingchun, E-mail: yuqch@cugb.edu.cn
  • Received Date: 13 Mar 2023
  • Accepted Date: 26 Jun 2023
  • Rev Recd Date: 28 Apr 2023
  • Objective

    The aperture of fractures (hydraulic equivalent aperture of fractures) of rock fractures is one of the key mechanical parameters of rocks.It has significant indicative significance in water conservancy projects, geological surveys and so on.At present, large-scale test methods such as cross-hole tests are often used to obtain the fracture apertures of deep rock masses in the field, but this method is rarely used many times in projects, and it is difficult to analyse the spatial variation in the aperture of fractures. This spatial variation is precisely what we need to focus on and discuss because it affects the accurate definition and application of the hydraulic equivalent fracture aperture in engineering applications.

    Methods

    In this paper, taking the surrounding rock of an underground power station cavern on the right bank of the Three Gorges Dam as an example, a new inversion method for determining the hydraulic equivalent aperture of fractures is proposed by using conventional single-hole water injection test data and three-dimensional fracture network simulation. The statistical data obtained from the measured fracture cataloguing data are used to carry out random simulation of fracture characteristics, and a three-dimensional discrete fracture network seepage model connected with water injection test boreholes is constructed to fit the relationship between the single-hole steady-state flow rate and injection. The hydraulic equivalent apertures of fractures at different depths of rocks are inverted.

    Results

    The results show that the hydraulic equivalent aperture of fractures in the research area is generally 0.07-0.30 mm, which confirms to the statistical characteristics of the log-normal distribution. Most of the inverted hydraulic equivalent apertures of fractures in boreholes decrease exponentially with burial depth, while a few boreholes show strong randomness of the hydraulic equivalent aperture of fractures and no obvious change with burial depth.

    Conclusion

    Compared to those of traditional methods, the inversion results of this approach are significantly different and require further verification.

     

  • The authors declare that no competing interests exist.
  • loading
  • [1]
    王利, 孟兵兵, 曹运兴, 等. 水力压裂体积张开度模型[J]. 岩石力学与工程学报, 2020, 39(5): 887-900. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202005004.htm

    WANG L, MENG B B, CAO Y X, et al. A volumetric opening model of hydraulic fracturing[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(5): 887-900. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202005004.htm
    [2]
    刘世奇, 王鹤, 王冉, 等, 煤层孔隙与裂隙特征的研究进展[J]. 沉积学报, 2021, 39(1): 212-230. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202101015.htm

    LIU S Q, WANG H, WANG R, et al. Research advances on characteristics of pores and fractures in coal seams[J]. Acta Sedimentologica Sinica, 2021, 39(1): 212-230. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202101015.htm
    [3]
    SONG F, DONG Y H, XU Z F, et al. Granite microcracks: Structure and connectivity at different depths[J]. Journal of Asian Earth Sciences, 2016, 124: 156-168 doi: 10.1016/j.jseaes.2016.04.023
    [4]
    YU H C, YU H C, WANG G Q, et al. Experimental study on the effect of prefabricated fissures on the creep mechanical properties and acoustic emission characteristics of sandstone under uniaxial compression[J]. Frontiers in Earth Science, 2022, 10: 107-115.
    [5]
    WANG Z H, XU C S, PETER D. A modified cubic law for single-phase saturated laminar flow in rough rockfractures[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 103: 107-115. doi: 10.1016/j.ijrmms.2017.12.002
    [6]
    黄帆, 姚池, 周创兵, 等. 考虑裂隙迹长和开度相关性的随机裂隙网络数值模拟及渗流分析[J]. 水利水运工程学报, 2018(2): 35-42. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY201802005.htm

    HUANG F, YAO C, ZHOU C B, et al. Numerical simulation and seepage analysis of stochastic fracture network considering correlation between fracture trace length and aperture[J]. Hydro-Science and Engineering, 2018(2): 35-42. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY201802005.htm
    [7]
    胡成, 陈刚, 曹孟雄, 等. 基于离散裂隙网络法和水流数值模拟技术的地下水封洞库水封性研究[J]. 地质科技通报, 2022, 41(1): 119-126. 10.19509/j.cnki.dzkq.2022.0029

    HU C, CHEN G, CAO M X, et al. Case study on water sealing efficiency of ground water storage caverns using disconcrete fracture network method and flow numerical simulation[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 119-126. (in Chinesewith English abstract) 10.19509/j.cnki.dzkq.2022.0029
    [8]
    何忱, 姚池, 杨建华, 等. 基于等效离散裂隙网络的三维裂隙岩体渗流模型[J]. 岩石力学与工程学报, 2019, 38(增刊1): 2748-2759. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1015.htm

    HE C, YAO C, YANG J H, et al. A 3D model for flow in fractured rock mass based on the equivalent discrete fracture network[J]. Chinese Journal of Rock Mechanics and Rock Mechanics and Engineering, 2019, 38(S1): 2748-2759. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1015.htm
    [9]
    成建梅, 罗一鸣. 岩溶多重介质地下水模拟技术及应用进展[J]. 地质科技通报, 2022, 41(5): 220-229. doi: 10.19509/j.cnki.dzkq.2022.0220

    CHENG J M, LUO Y M. Overview of groundwater modeling technology and its application in karst areas with multiplevoid media[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 220-229. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0220
    [10]
    夏露, 谢娟, 于青春. 裂隙延展性统计分布离散性对岩体块体化程度REV的影响[J]. 水文地质工程地质, 2019, 46(4): 112-118. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201904016.htm

    XIA L, XIE J, YU Q C. Influence of statistical distribution dispersion in the fracture size on blockiness REV of fractured rock masses[J]. Hydrogeology & Engineering Geology, 2019, 46(4): 112-118. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201904016.htm
    [11]
    于青春, 陈德基, 薛果夫, 等. 裂隙岩体一般块体理论初步[J]. 水文地质工程地质, 2005, 32(6): 42-48. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200506010.htm

    YU Q C, CHEN D J, XUE G F, et al. Preliminary study on general block method of fractured rock mass[J]. Hydrogeology & Engineering Geology, 2005, 32(6): 42-48. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200506010.htm
    [12]
    MAXIMILIAN O, KOTTWITZ, ANTON A, et al. The hydraulic efficiency of single fractures: Correcting the cubic law parameterization for self-affine surface roughness and fracture closure[J]. Solid Earth, 2020, 11(3): 947-957.
    [13]
    LU Y Y, CHEN X Y, LI H L, et al. An improved cubic law for shale fracture considering the effect of loading path[J]. International Journal of Oil, Gas and Coal Technology, 2021, 26(1): 25-26.
    [14]
    ZHANG W J, PENG Z Y, HAN C H, et al. Numerical investigation of an equivalent hydraulic aperture for rough rock fractures based on cosimulation[J]. Computers and Geotechnics, 2023, 156: 105281.
    [15]
    BEAR J. Dynamics of fluids in porous media[M]. New York: Elsevier, 1972.
    [16]
    DAVID T S. An isotropic permeability of fractured media[J]. Water Resources Research, 1969, 5(12): 1273-1289.
    [17]
    于青春, 大西有三. 岩体三维不连续裂隙网络及其逆建模方法[J]. 地球科学, 2003, 28(5): 522-527. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200305008.htm

    YU Q C, OHNISHI Y Z. Three-dimensional discrete fracture network model and its inverse method[J]. Earth Science, 2003, 28(5): 522-526. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200305008.htm
    [18]
    U.S. Committee for Rock Mechanics. Rock fracture and fluidflow: Contemporary understanding and applications[S]. Washington D.C. : National Academy Press, 1996.
    [19]
    KULATILAKE P H S, WANG W S, STEPHANSSON O. Effect of finite size joints on the deformability of jointed rock in three dimensions[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1993, 30(5): 479-501.
    [20]
    于青春, 刘丰收, 大西有三. 岩体非连续裂隙网络三维面状渗流模型[J]. 岩石力学与工程学报, 2005, 24(4): 662-668. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200504021.htm

    YU Q C, LIU F S, OHNISHI Y Z. Three-dimensional planar model for fluid flow in discrete fracture network of rock masses[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(4): 662-668. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200504021.htm
    [21]
    HE X P, SINAN M, KWAK H, et al. A corrected cu-bic law for single-phase laminar flow through rough-walled fractures[J]. Advances in Water Resources, 2021, 154: 103984.
    [22]
    YU Q. Analyses for fluid flow and solute transport in discrete fracture network[D]. Kyoto: Kyoto University, 2000.
    [23]
    Lugeon M. Barrages et géologie, méthodes de recherches: Terrassement et imperméabilisation[M]. Lausanne: Rouge, 1933.
    [24]
    陈崇希. Dupuit圆岛稳定井流模型的改进: 具入渗补给[J]. 水文地质工程地质, 2020, 47(5): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202106001.htm

    CHEN C X. Improvement of Dupuit model: With infiltration recharge[J]. Hydrogeology & Engineering Geology, 2020, 47(5): 1-4. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202106001.htm
    [25]
    ZHOU J Q, CHEN Y F, TANG H M, et al. Disentangling the simultaneous effects of inertial losses and fracture dilation on permeability of pressurized fractured rocks (Article)[J]. Geophysical Research Letters, 2019, 46(15): 8862-8871.
    [26]
    张莉丽, 于青春, 王允, 等. 三峡工程地下电站主厂房围岩渗透性研究[J]. 地学前缘, 2010, (6): 286-290. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201006040.htm

    ZHANG L L, YU Q C, WANG Y, et al. Permeability of the rock mass around the underground powerhouse of Three Gorges Project[J]. Earth Science Frontiers, 2010, 17(6): 286-290. (in Chinese with English abstract) https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201006040.htm
    [27]
    MARDIA K V. Statistics of directional data[M]. Lon-don: Academic Press Inc., 1972.
    [28]
    朱建业. 《水利水电工程地质勘察规范》(GB 50287-99)[S]. 北京: 水利部水利水电规划设计总院, 2004.

    ZHU J Y. Code for water resources and hydropower engineering geological investigation (GB 50287-99)[S]. Beijing: General Institute of Water Conservancy and Hydropower Planning and Design, Ministry of Water Resources, 2004.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(245) PDF Downloads(84) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return