Volume 43 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
SHANG Jianbo, WEI Xing, CAO Yuanyuan, SHI Hongjie, LIU Mingliang. Boron geochemical characteristics in different types of geothermal water and its indications for the genesis mechanism of geothermal systems[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 288-297. doi: 10.19509/j.cnki.dzkq.tb20230156
Citation: SHANG Jianbo, WEI Xing, CAO Yuanyuan, SHI Hongjie, LIU Mingliang. Boron geochemical characteristics in different types of geothermal water and its indications for the genesis mechanism of geothermal systems[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 288-297. doi: 10.19509/j.cnki.dzkq.tb20230156

Boron geochemical characteristics in different types of geothermal water and its indications for the genesis mechanism of geothermal systems

doi: 10.19509/j.cnki.dzkq.tb20230156
More Information
  • Objective

    Boron is a relatively conservative element in geothermal fluids that often accompanies geothermal systems, and its origin plays an important role in revealing the genesis mechanisms of different types of geothermal systems.

    Methods

    In this study, the geothermal systems of the Daggyai in Tibet and the Yinchuan Basin in Ningxia were selected for investigating the source of boron in geothermal water and its related geochemical processes in different types of geothermal systems. These study areas are typical of high-temperature and medium-low-temperature geothermal systems in China, and both have extremely high boron concentrations.

    Results

    Results showed that the boron in the neutral/weakly alkaline geothermal water of the Daggyai was primarily contributed by dissolution filtration of the surrounding rocks and magmatic fluid input, while the boron in the acidic geothermal water was primarily contributed by the input of shallow cold water from the subsurface. Boron in the geothermal water of Yinchuan primarily originated from the recharge of deep paleosedimentary water. On this basis, the genetic mechanisms of different types of geothermal systems were discussed by combining the regional geological background and the hydrochemical characteristics of geothermal water.

    Conclusion

    This study suggests that the geochemical characteristics of boron in geothermal water have the potential to identify the genesis mechanisms of different types of geothermal systems.

     

  • The authors declare that no competing interests exist.
  • loading
  • [1]
    MOHAMMADI Z, BAGHERI R, JAHANSHAHI R. Hyd-rogeochemistry and geothermometry of Changal thermal springs, Zagros region, Iran[J]. Geothermics, 2010, 39(3): 242-249. doi: 10.1016/j.geothermics.2010.06.007
    [2]
    WANG M M, ZHOU X, LIU Y, et al. Major, trace and rare earth elements geochemistry of geothermal waters from the Rehai high-temperature geothermal field in Tengchong of China[J]. Applied Geochemistry, 2020, 119: 104639. doi: 10.1016/j.apgeochem.2020.104639
    [3]
    LI X, QI J, YI L, et al. Hydrochemical characteristics and evolution of geothermal waters in the eastern Himalayan syntaxis geothermal field, southern Tibet[J]. Geothermics, 2021, 97: 102233. doi: 10.1016/j.geothermics.2021.102233
    [4]
    孙红丽, 马峰, 蔺文静, 等. 西藏高温地热田地球化学特征及地热温标应用[J]. 地质科技情报, 2015, 34(3): 171-177.

    SUN H L, MA F, LIN W J, et al. Geochemical characteristics geothermometer application in high temperature geothermal field in Tibet[J]. Geological Science and Technology Information, 2015, 34(3): 171-177. (in Chinese with English abstract)
    [5]
    余浩文, 刘昭, 荣峰, 等. 西藏错那地热田水化学特征与物源机制[J]. 地质科技通报, 2021, 40(3): 34-44. doi: 10.19509/j.cnki.dzkq.2021.0318

    YU H W, LIU Z, RONG F, et al. Characteristics and source mechanism of geothermal field in Cuona, Tibet[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 34-44. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2021.0318
    [6]
    KAASALAINEN H, STEFÁNSSON A. The chemistry of trace elements in surface geothermal waters and steam, Iceland[J]. Chemical Geology, 2012, 330/331: 60-85. doi: 10.1016/j.chemgeo.2012.08.019
    [7]
    KAASALAINEN H, STEFÁNSSON A, GIROUD N, et al. The geochemistry of trace elements in geothermal fluids, Iceland[J]. Applied Geochemistry, 2015, 62(S1): 207-223.
    [8]
    ELENGA H I, TAN H, SU J, et al. Origin of the enrichment of B and alkali metal elements in the geothermal water in the Tibetan Plateau: Evidence from B and Sr isotopes[J]. Geochemistry, 2021, 81(3): 125797. doi: 10.1016/j.chemer.2021.125797
    [9]
    郭清海, 杨晨. 西藏搭格架高温热泉中钨的水文地球化学异常[J]. 地球科学, 2021, 46(7): 2544-2554.

    GUO Q H, YANG C. Tungsten anomaly of the high-temperature hot springs in the Daggyai hydrothermal area, Tibet, China[J]. Earth Science, 2021, 46(7): 2544-2554. (in Chinese with English abstract)
    [10]
    郭清海, 吴启帆. 云南腾冲热海高温地热水中汞的地球化学异常及其指示意义[J]. 地学前缘, 2020, 27(1): 103-111.

    GUO Q H, WU Q F. Hydrogeochemical anomaly of mercury in the high-temperature geothermal waters in the Rehai hydrothermal area in Tengchong[J]. Earth Science Frontiers, 2020, 27(1): 103-111. (in Chinese with English abstract)
    [11]
    GUO Q H, PLANER-FRIEDRICH B, LUO L, et al. Speciation of antimony in representative sulfidic hot springs in the YST geothermal province(China) and its immobilization by spring sediments[J]. Environmental Pollution, 2020, 266(Pt 1): 115221.
    [12]
    庄亚芹, 郭清海, 刘明亮, 等. 高温富硫化物热泉中硫代砷化物存在形态的地球化学模拟: 以云南腾冲热海水热区为例[J]. 地球科学, 2016, 41(9): 1499-1510.

    ZHUANG Y Q, GUO Q H, LIU M L, et al. Geochemical simulation of thioarsenic speciation in high-temperature, sulfide-rich hot springs: A case study in the Rehai hydrothermal area, Tengchong, Yunnan[J]. Earth Science, 2016, 41(9): 1499-1510. (in Chinese with English abstract)
    [13]
    GURAV T, SINGH H K, CHANDRASEKHARAM D. Major and trace element concentrations in the geothermal springs along the west coast of Maharashtra, India[J]. Arabian Journal of Geosciences, 2016, 9(1): 44. doi: 10.1007/s12517-015-2139-2
    [14]
    GUO Q H, PLANER-FRIEDRICH B, LIU M L, et al. Magmatic fluid input explaining the geochemical anomaly of very high arsenic in some southern Tibetan geothermal waters[J]. Chemical Geology, 2019, 513: 32-43. doi: 10.1016/j.chemgeo.2019.03.008
    [15]
    LIU M L, GUO Q H, LUO L, et al. Environmental impacts of geothermal waters with extremely high boron concentrations: Insight from a case study in Tibet, China[J]. Journal of Volcanology and Geothermal Research, 2020, 397: 106887. doi: 10.1016/j.jvolgeores.2020.106887
    [16]
    ELLIS A J. Quantitative interpretation of chemical characteristics of hydrothermal systems[J]. Geothermics, 1970, 2(part-P1): 516-528.
    [17]
    LIU M L, GUO Q H, WU G, et al. Boron geochemistry of the geothermal waters from two typical hydrothermal systems in southern Tibet(China): Daggyai and Quzhuomu[J]. Geothermics, 2019, 82: 190-202. doi: 10.1016/j.geothermics.2019.06.009
    [18]
    AGGARWAL J K, PALMER M R, BULLEN T D, et al. The boron isotope systematics of Icelandic geothermal waters: 1. Meteoric water charged systems[J]. Geochimica et Cosmochimica Acta, 2000, 64(4): 579-585. doi: 10.1016/S0016-7037(99)00300-2
    [19]
    PALMER M R, STURCHIO N C. The boron isotope systematics of the Yellowstone National Park(Wyoming) hydrothermal system: A reconnaissance[J]. Geochimica et Cosmochimica Acta, 1990, 54(10): 2811-2815. doi: 10.1016/0016-7037(90)90015-D
    [20]
    吴俐俐, 马文展, 唐渊. 青藏高原高硼卤水的水化学特征及其成因[J]. 地理研究, 1984, 3(4): 1-11.

    WU L L, MA W Z, TANG Y. On the water-chemical properties and formative conditions of high-boron brine in Qinghai-Xizang Plateau[J]. Geographical Research, 1984, 3(4): 1-11. (in Chinese with English abstract)
    [21]
    王香桂, 伍乾富, 伍坤宇, 等. 搭格架温泉水化学特征及其约束因素研究[J]. 西北地质, 2011, 44(2): 157-164.

    WANG X G, WU Q F, WU K Y, et al. Hydrochemical characteristics and constraints of hot springs in Dagejia Geothermal Field, Tibet, China[J]. Northwestern Geology, 2011, 44(2): 157-164. (in Chinese with English abstract)
    [22]
    王尊波, 沈立成, 梁作兵, 等. 西藏搭格架地热区天然水的水化学组成与稳定碳同位素特征[J]. 中国岩溶, 2015, 34(3): 201-208.

    WANG Z B, SHEN L C, LIANG Z B, et al. Characteristics of hydrochemical compositions and stable carbon isotope of natural water in the Daggyia geothermal field, Tibet, China[J]. Carsologica Sinica, 2015, 34(3): 201-208. (in Chinese with English abstract)
    [23]
    王贵玲, 张薇, 梁继运, 等. 中国地热资源潜力评价[J]. 地球学报, 2017, 38(4): 449-459.

    WANG G L, ZHANG W, LIANG J Y, et al. Evaluation of geothermal resources potential in China[J]. Acta Geoscientica Sinica, 2017, 38(4): 449-459. (in Chinese with English abstract)
    [24]
    陈晓晶, 虎新军, 李宁生, 等. 银川盆地东缘地热成藏模式探讨[J]. 物探与化探, 2021, 45(3): 583-589.

    CHEN X J, HU X J, LI N S, et al. A discussion on geothermal accumulation model on the eastern margin of Yinchuan Basin[J]. Geophysical & Geochemical Exploration, 2021, 45(3): 583-589. (in Chinese with English abstract)
    [25]
    潘桂棠, 肖庆辉, 陆松年, 等. 中国大地构造单元划分[J]. 中国地质, 2009, 36(1): 1-28.

    PAN G T, XIAO Q H, LU S N, et al. Subdivision of tectonic units in China[J]. Geology in China, 2009, 36(1): 1-28. (in Chinese with English abstract)
    [26]
    郭艳琴, 王美霞, 郭彬程, 等. 鄂尔多斯盆地西缘北部上古生界沉积体系特征及古地理演化[J]. 西北大学学报(自然科学版), 2020, 50(1): 93-104.

    GUO Y Q, WANG M X, GUO B C, et al. Sedimentary system characteristics and paleographic evolution of Upper Paleozoic of northern west margin Ordos Basin[J]. Journal of Northwest University(Natural Science Edition), 2020, 50(1): 93-104. (in Chinese with English abstract)
    [27]
    严烈宏, 王利, 张黎, 等. 银川盆地地热系统[M]. 银川: 宁夏人民出版社, 2002.

    YAN L H, WANG L, ZHANG L, et al. Geothermal system in Yinchuan Basin[M]. Yinchuan: Ningxia People's Publishing House, 2002. (in Chinese)
    [28]
    何欣, 马悦, 刘建生, 等. 银川贺兰县地热地质条件及水化学特征研究[J]. 地下水, 2020, 42(4): 24-26.

    HE X, MA Y, LIU J S, et al. The geothermal geological conditions and hydrochemical characteristicsin Helan County, Yinchuan[J]. Ground Water, 2020, 42(4): 24-26. (in Chinese with English abstract)
    [29]
    苏小四, 林学钰, 董维红, 等. 银川平原深层地下水14C年龄校正[J]. 吉林大学学报(地球科学版), 2006, 36(5): 830-836.

    SU X S, LIN X Y, DONG W H, et al. 14C age correction of deep ground water in Yinchuan Plain[J]. Journal of Jilin University(Earth Science Edition), 2006, 36(5): 830-836. (in Chinese with English abstract)
    [30]
    MILLOT R, HEGAN A, NÉGREL P. Geothermal waters from the Taupo Volcanic Zone, New Zealand: Li, B and Sr isotopes characterization[J]. Applied Geochemistry, 2012, 27(3): 677-688. doi: 10.1016/j.apgeochem.2011.12.015
    [31]
    BATTISTEL M, HURWITZ S, EVANS W C, et al. The chemistry and isotopic composition of waters in the low-enthalpy geothermal system of Cimino-Vico Volcanic District, Italy[J]. Journal of Volcanology & Geothermal Research, 2016, 328: 222-229.
    [32]
    郭清海. 岩浆热源型地热系统及其水文地球化学判据[J]. 地质学报, 2020, 94(12): 3544-3554.

    GUO Q H. Magma-heated geothermal systems and hydrogeochemical evidence of their occurrence[J]. Acta Geologica Sinica, 2020, 94(12): 3544-3554. (in Chinese with English abstract)
    [33]
    刘明亮, 何曈, 吴启帆, 等. 雄安新区地热水化学特征及其指示意义[J]. 地球科学, 2020, 45(6): 2221-2231.

    LIU M L, HE T, WU Q F, et al. Hydrogeochemistry of geothermal waters from Xiong'an New Area and its indicating significance[J]. Earth Science, 2020, 45(6): 2221-2231. (in Chinese with English abstract)
    [34]
    张梦昭, 郭清海, 刘明亮, 等. 山西忻州盆地地热水地球化学特征及其成因机制[J]. 地球科学, 2023, 48(3): 973-987.

    ZHANG M Z, GUO Q H, LIU M L, et al. Geochemical characteristics and mechanisms of the geothermal waters in the Xinzhou Basin, Shanxi Province[J]. Earth Science, 2023, 48(3): 973-987. (in Chinese with English abstract)
    [35]
    方维萱, 黄转莹. 秦岭凤太及柞山沉积盆地中硼地球化学场分析及意义[J]. 地质地球化学, 2001, 29(3): 32-39.

    FANG W X, HUANG Z Y. The analysis and study of boron geochemical fields in the Qinling Orogen[J]. Geology-Geochemistry, 2001, 29(3): 32-39. (in Chinese with English abstract)
    [36]
    何丹, 马致远, 王疆霞, 等. 关中盆地深部地下热水残存沉积水的同位素证据[J]. 地球科学与环境学报, 2014, 36(4): 117-126.

    HE D, MA Z Y, WANG J X, et al. Isotopic eivdence of remaining sedimentary water in the deep geothermal water of Guanzhong Basin[J]. Journal of Earth Sciences and Environment, 2014, 36(4): 117-126. (in Chinese with English abstract)
    [37]
    沈照理, 朱宛华, 钟佐燊. 水文地球化学基础[M]. 北京: 地质出版社, 1993.

    SHEN Z L, ZHU W H, ZHONG Z S. Fundamentals of hydrogeochemistry[M]. Beijing: Geological Publishing House, 1993. (in Chinese)
    [38]
    牛新生, 黄华, 郑绵平. 江汉盆地潜江凹陷地下卤水地球化学特征和分布规律[J]. 地学前缘, 2021, 28(6): 56-65.

    NIU X S, HUANG H, ZHENG M P. Geochemical characteristics and distribution patterns of subsurface brins in the Qianjiang Depression[J]. Earth Science Frontiers, 2021, 28(6): 56-65. (in Chinese with English abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(65) PDF Downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return