Volume 43 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
LUO Mingxia, CAO Zicheng, XU Qinqi, LIU Yongli, SHANG Kai. Geochemical characteristics and geological significance of Sinian crude oil from Well Tashen 5, Tahe Oilfield, Tarim Basin[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 135-149. doi: 10.19509/j.cnki.dzkq.tb20230194
Citation: LUO Mingxia, CAO Zicheng, XU Qinqi, LIU Yongli, SHANG Kai. Geochemical characteristics and geological significance of Sinian crude oil from Well Tashen 5, Tahe Oilfield, Tarim Basin[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 135-149. doi: 10.19509/j.cnki.dzkq.tb20230194

Geochemical characteristics and geological significance of Sinian crude oil from Well Tashen 5, Tahe Oilfield, Tarim Basin

doi: 10.19509/j.cnki.dzkq.tb20230194
More Information
  • Corresponding author: LUO Mingxia, E-mail: luomingxia0717@163.com
  • Received Date: 13 Apr 2023
  • Accepted Date: 30 Jul 2023
  • Rev Recd Date: 27 Jul 2023
  • Objective

    The Well Tashen 5 that was completed in 2021 has a burial depth of 9 017 m and is currently the deepest drilling well in Asia. It is also the first hydrocarbon breakthrough in the dolomite sectionof Upper Sinian at a depth of 8 780-8 840 m in the Tarim Basin. This is a major discovery in the field of ultradeep dolomite after the breakthrough of the Cambrian subsalt from the Well Luntan 1.

    Methods

    To better understand the hydrocarbon generation process, the organic geochemical characteristics of the Sinian condensate and the Upper Ordovician heavy oil in the Well Tashen 5 and its neighboring Cambrian volatile oil and Ordovician condensate were compared.

    Results

    The n-alkane series of both the condensate and the chloroform extracted from dolomite are well distributed in the Sinian of the Well Tashen 5, indicating the domination of anoxic environment during the deposition of organic matter. Both biomarker compounds and carbon isotope distributions in the Sinian hydrocarbons of the Well Tashen 5 are similar to those of the Ordovician normal oils-ultraheavy oils and condensate oils of the Yakla region, implying the same hydrocarbon source between the Well Tashen 5 and the Yakla region. Equivalent vitrinite reflectance (Rc) in the Sinian hydrocarbons of the Well Tashen 5 is 1.7%, which is higher than the Rc of the Upper Ordovician heavy oil and Cambrian light oil but is comparable with condensate of nearby regions and belongs to the high maturity stage.It is reasonable to suggest that, the Sinian hydrocarbons of the Well Tashen 5 were mainly sourced from the overlying Lower Sinian Yurtus Formation that also was the seal rock layer. The high-maturity condensate was generated by the Yurtus Formation in the depression area during the Late Himalayan Period and was transported into the structure traps rich in Upper Sinian dolomites along the slope.

    Conclusion

    The breakthrough of Sinian hydrocarbons in the Well Tashen 5 has discovered a new hydrocarbon-bearing layer, displayed the process of ultradeep hydrocarbon formation, and indicated a new exploration direction for ultradeep exploration in the Tarim Basin.

     

  • The authors declare that no competing interests exist.
  • loading
  • [1]
    马永生, 何登发, 蔡勋育, 等. 中国海相碳酸盐岩的分布及油气地质基础问题[J]. 岩石学报, 2017, 33(4): 1007-1020.

    MA Y S, HE D F, CAI X Y, et al. Distribution and geological framework of marine carbonate rocks in China and their petroleum geological significance[J]. Acta Petrologica Sinica, 2017, 33(4): 1007-1020. (in Chinese with English abstract)
    [2]
    顾忆, 黄继文, 贾存善, 等. 塔里木盆地海相油气成藏研究进展[J]. 石油实验地质, 2020, 42(1): 1-12.

    GU Y, HUANG J W, JIA C S, et al. Research progress on marine oil and gas accumulation in the Tarim Basin[J]. Petroleum Geology & Experiment, 2020, 42(1): 1-12. (in Chinese with English abstract)
    [3]
    杨海军, 于双, 张海祖, 等. 塔里木盆地轮探1井下寒武统烃源岩地球化学特征及深层油气勘探意义[J]. 地球化学, 2020, 49(6): 666-682.

    YANG H J, YU S, ZHANG H Z, et al. Geochemical characteristics of Lower Cambrian source rocks and their exploration significance in Well Luntan 1, Tarim Basin[J]. Geochimica, 2020, 49(6): 666-682. (in Chinese with English abstract)
    [4]
    王招明, 谢会文, 陈永权, 等. 塔里木盆地中深1井寒武系盐下白云岩原生油气藏的发现与勘探意义[J]. 中国石油勘探, 2014, 19(2): 1-13.

    WANG Z M, XIE H W, CHEN Y Q, et al. Discovery and exploration significance of primary oil and gas reservoirs in the Lower Cambrian salt-bearing dolomite of Well Zhongshen 1, Tarim Basin[J]. China Petroleum Exploration, 2014, 19(2): 1-13. (in Chinese with English abstract)
    [5]
    云露, 翟晓先. 塔里木盆地塔深1井寒武系储层与成藏特征探讨[J]. 石油与天然气地质, 2008, 29(6): 726-732.

    YUN L, ZHAI X X. Discussion on reservoir and accumulation characteristics of Lower Cambrian strata in Well Tashen 1, Tarim Basin[J]. Oil & Gas Geology, 2008, 29(6): 726-732. (in Chinese with English abstract)
    [6]
    何金有, 邬光辉, 李启明, 等. 塔里木盆地震旦系石油地质特征及勘探方向[J]. 新疆石油地质, 2010, 31(5): 482-484.

    HE J Y, WU G H, LI Q M, et al. Petroleum geological characteristics and exploration directions of the Sinian in the Tarim Basin[J]. Xinjiang Petroleum Geology, 2010, 31(5): 482-484. (in Chinese with English abstract)
    [7]
    张科, 潘文庆, 苏劲, 等. 塔里木盆地南华系-寒武系烃源岩时空分布与生烃潜力评价[J]. 中国石油勘探, 2022, 27(4): 121-134.

    ZHANG K, PAN W Q, SU J, et al. Spatial and temporal distribution of the Silurian-Cambrian source rocks and hydrocarbon generation potential evaluation in the Tarim Basin[J]. China Petroleum Exploration, 2022, 27(4): 121-134. (in Chinese with English abstract)
    [8]
    杨鑫, 赵永强, 兰明杰, 等. 塔里木新元古代原型盆地与深层油气勘探意义[J]. 地质学报, 2021, 95(5): 1426-1447.

    YANG X, ZHAO Y Q, LAN M J, et al. Provenance basin and deep oil and gas exploration significance in the Neoproterozoic era of the Tarim Basin[J]. Acta Geologica Sinica, 2021, 95(5): 1426-1447. (in Chinese with English abstract)
    [9]
    易士威, 李明鹏, 郭绪杰, 等. 塔里木盆地南华纪古裂谷对寒武系沉积的控制及勘探意义[J]. 石油学报, 2020, 41(11): 1293-1308.

    YI S W, LI M P, GUO X J, et al. Control of the Sinian rifted basin on the Cambrian sedimentation and its exploration significance in the Tarim Basin[J]. Acta Petrolei Sinica, 2020, 41(11): 1293-1308. (in Chinese with English abstract)
    [10]
    杨海军, 陈永权, 潘文庆, 等. 塔里木盆地南华纪-中寒武世构造沉积演化及其盐下勘探选区意义[J]. 中国石油勘探, 2021, 26(4): 84-98.

    YANG H J, CHEN Y Q, PAN W Q, et al. Tectonic-sedimentary evolution and salt-bearing exploration targets of the Silurian-Cambrian in the Tarim Basin[J]. China Petroleum Exploration, 2021, 26(4): 84-98. (in Chinese with English abstract)
    [11]
    吴林, 管树巍, 任荣, 等. 前寒武纪沉积盆地发育特征与深层烃源岩分布: 以塔里木新元古代盆地与下寒武统烃源岩为例[J]. 石油勘探与开发, 2016, 43(6): 905-915.

    WU L, GUAN S W, REN R, et al. The characteristics of Precambrian sedimentary basin and the distribution of deep source rock: A case study of Tarim Basin in Neoproterozoic and source rocks in Early Cambrian, western China[J]. Petroleum Exploration and Development, 2016, 43(6): 905-915. (in Chinese with English abstract)
    [12]
    宁博, 李百强, 吴珍珍, 等. 塔里木盆地中央隆起带寒武系-奥陶系白云岩成岩相及其地球化学特征[J]. 地质科技通报, 2022, 41(4): 46-56. doi: 10.19509/j.cnki.dzkq.2021.0257

    NING B, LI B Q, WU Z Z, et al. Diagenetic facies of dolomite and geochemical characteristics across the Cambrian-Ordovician transitions in the Central Uplift Zone, Tarim Basin[J]. Bulletin of Geological Science and Technology, 2022, 41(4): 46-56. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2021.0257
    [13]
    杨海军, 邓兴梁, 张银涛, 等. 塔里木盆地满深1井奥陶系超深断控碳酸盐岩油气藏勘探重大发现及意义[J]. 中国石油勘探, 2020, 25(3): 13-23.

    YANG H J, DENG X L, ZHANG Y T, et al. Great discovery and its significance of exploration for Ordovician ultra-deep fault-controlled carbonate reservoirs of Well Manshen 1 in Tarim Basin[J]. China Petroleum Exploration, 2020, 25(3): 13-23. (in Chinese with English abstract)
    [14]
    张城瑞. 塔河地区鹰山组-下丘里塔格组深层碳酸盐岩储层特征研究[D]. 成都: 西南石油大学, 2017.

    ZHANG C R. Study on the characteristics of deep carbonate reservoir in Yingshan Formation and Lower Quritage Formation in Tahe area[D]. Chengdu: Southwest Petroleum University, 2017. (in Chinese with English abstract)
    [15]
    马冬晨, 王丹, 贾星亮, 等. 塔里木盆地塔河油田原油地球化学特征的化学计量学分析及应用[J]. 天然气地球科学, 2022, 33(11): 1848-1861.

    MA D C, WANG D, JIA X L, et al. Chemometric analysis and application research on geochemical characteristics of crude oil in Tahe Oilfield, Tarim Basin[J]. Natural Gas Geoscience, 2022, 33(11): 1848-1861. (in Chinese with English abstract)
    [16]
    朱心健, 陈践发, 伍建军, 等. 塔里木盆地台盆区古生界原油碳同位素组成及油源探讨[J]. 石油勘探与开发, 2017, 44(6): 997-1004.

    ZHU X J, CHEN J F, WU J J, et al. Carbon isotopic compositions and origin of Paleozoic crude oil in the platform region of Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2017, 44(6): 997-1004. (in Chinese with English abstract)
    [17]
    陈轩, 刘王涵, 鲍典, 等. 塔河油田奥陶系古岩溶洞穴充填物时代鉴别特征及其储集意义[J]. 地学前缘, 2023: 1-12.

    CHEN X, LIU W H, BAO D, et al. Ordovician palaeokarst caves in the Tahe Oilfield: Burial age of cave fills and its implication for hydrocarbon reservoirs[J]. Earth Science Frontiers, 2023: 1-12. (in Chinese with English abstract)
    [18]
    段毅, 于文修, 郑朝阳, 等. 塔里木盆地塔河油田原油与源岩对比研究[J]. 沉积学报, 2009, 27(1): 164-171.

    DUAN Y, YU W X, ZHENG C Y, et al. Study of oil-source correlation for Tahe Oilfield of Tarim Basin[J]. Acta Sedimentologica Sinica, 2009, 27(1): 164-171. (in Chinese with English abstract)
    [19]
    马安来, 张水昌, 张大江, 等. 塔里木盆地塔东2井稠油地球化学研究[J]. 地质科技情报, 2004, 23(4): 59-63.

    MA A L, ZHANG S C, ZHANG D J, et al. Geochemistry of the Heavy Oils from Well TD2 in Tarim Basin, NW China[J]. Geological Science and Technology Information, 2004, 23(4): 59-63. (in Chinese with English abstract)
    [20]
    云露, 蒋华山. 塔河油田成藏条件与富集规律[J]. 石油与天然气地质, 2007, 28(6): 768-775.

    YUN L, JIANG H S. Hydrocarbon accumulation conditions and enrichment rules in Tahe Oilfield[J]. Oil & Gas Geology, 2007, 28(6): 768-775. (in Chinese with English abstract)
    [21]
    顾忆. 塔里木盆地北部塔河油田油气藏成藏机制[J]. 石油实验地质, 2000, 22(4): 307-312.

    GU Y. Formingmechanism of hydrocarbon pools in Tahe Oilfield of the northern Tarim Basin[J]. Petroleum Geology & Experiment, 2000, 22(4): 307-312. (in Chinese with English abstract)
    [22]
    高利君, 王虹, 王胜利. 塔河油田9区奥陶系凝析气藏特征及控制因素[J]. 新疆地质, 2013, 31(增刊1): 91-94.

    GAO L J, WANG H, WANG S L. The characteristics and control factors of Ordovician condensate gas reservoir in Block 9 of Tahe Oil Field[J]. Xinjiang Geology, 2013, 31(S1): 91-94. (in Chinese with English abstract)
    [23]
    陈建平, 王绪龙, 倪云燕, 等. 准噶尔盆地南缘天然气成因类型与气源[J]. 石油勘探与开发, 2019, 46(3): 461-473.

    CHEN J P, WANG X L, NI Y Y, et al. Genetic type and source of natural gas in the southern margin of Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2019, 46(3): 461-473. (in Chinese with English abstract)
    [24]
    仲美玉, 孔德明, 崔耀耀, 等. 基于三维荧光光谱与图像矩算法的海面溢油检测方法[J]. 石油学报: 石油加工, 2023, 39(4): 900-909.

    ZHONG M Y, KONG D M, CUI Y Y, et al. Detection method of spilled oil at sea based on three-dimensional fluorescence spectrum and image moment algorithm[J]. Acta Petrolei Sinica: Petroleum Processing Section, 2023, 39(4): 900-909. (in Chinese with English abstract)
    [25]
    陈银节, 缪九军, 张宗元. 三维荧光光谱的油气指示意义[J]. 天然气地球科学, 2005, 16(1): 69-72.

    CHEN Y J, MIAO J J, ZHANG Z Y. Three-dimensional fluorescence spectrum and its implication for hydrocarbon[J]. Natural Gas Geoscience, 2005, 16(1): 69-72. (in Chinese with English abstract)
    [26]
    赵婷婷, 罗小平, 吴飘, 等. 辽西低凸起JZ25-1S太古界潜山原油地球化学特征及来源分析[J]. 石油实验地质, 2020, 42(6): 981-990.

    ZHAO T T, LUO X P, WU P, et al. Geochemical characteristics and source analysis of crude oil from Archean buried hill JZ25-1S in Liaoxi Low Uplift[J]. Petroleum Geology & Experiment, 2020, 42(6): 981-990. (in Chinese with English abstract)
    [27]
    田苗苗, 毛治超. 渤海湾盆地沧东凹陷古近系原油地球化学特征及油源分析[J]. 当代化工, 2020, 49(11): 2528-2531, 2535.

    TIAN M M, MAO Z C. Geochemical characteristics of crude oil and oil source analysis of Cangdong Sag in Bohai Bay Basin[J]. Contemporary Chemical Industry, 2020, 49(11): 2528-2531, 2535. (in Chinese with English abstract)
    [28]
    PETERS K E, WALTERS C C, MOLDOWAN J M. Biomarkers: Assessment of petroleum source rock age and depositional environment[M]. Cham: Springer International Publishing, 2017.
    [29]
    DIDYK B M, SIMONEIT B R T, BRASSELL S C, et al. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation[J]. Nature, 1978, 272(5650): 216-222. doi: 10.1038/272216a0
    [30]
    王汇彤, 张水昌, 翁娜, 等. 稠油中饱和烃复杂混合物成分解析及其意义[J]. 中国科学(化学), 2012, 42(10): 1469-1478.

    WANG H T, ZHANG S C, WENG N, et al. Insight of unresolved complex mixtures of saturated hydrocarbons in heavy oil via GCxGC-TOFMS analyses[J]. Scientia Sinica(Chimica), 2012, 42(10): 1469-1478. (in Chinese with English abstract)
    [31]
    MELLO M R, GAGLIANONE P C, BRASSELL S C, et al. Geochemical and biological marker assessment of depositional environments using Brazilian offshore oils[J]. Marine and Petroleum Geology, 1988, 5(3): 205-223. doi: 10.1016/0264-8172(88)90002-5
    [32]
    CHANG X, GE T, SHI B, et al. Application of biomarker recovery method for oil-source correlation in severe to extreme biodegradation in eastern Chepaizi Uplift, Junggar Basin(NW China)[J]. SSRN Electronic Journal, 2022, 8: 11865-11884.
    [33]
    HUANG H, ZHANG H, YIN M, et al. Molecular composition characterization of oilsand heating experiments to investigate steam-solvent effects and chemical reactions during thermal recovery[J]. Energy & Amp: Fuels, 2021, 35(12): 9917-9929.
    [34]
    陈中红, 柴智. 原油混合后成熟度参数的差异性及其地质意义: 以塔北隆起托甫台地区奥陶系为例[J]. 岩性油气藏, 2022, 34(5): 38-49.

    CHEN Z H, CHAI Z. Difference of maturity parameters of mixed crude oil and its geological significance: A case study of Ordovician in Tuofutai area, Tabei uplift[J]. Lithologic Reservoirs, 2022, 34(5): 38-49. (in Chinese with English abstract)
    [35]
    KVALHEIM O M, CHRISTY A A, TELNEAS N, et al. Maturity determination of organic matter in coals using the methylphenanthrene distribution[J]. Geochimica et Cosmochimica Acta, 1987, 51(7): 1883-1888. doi: 10.1016/0016-7037(87)90179-7
    [36]
    倪春华, 包建平, 梁世友. 渤海湾盆地渤中凹陷原油成熟度的多参数综合评价[J]. 石油实验地质, 2009, 31(4): 399-402, 408.

    NI C H, BAO J P, LIANG S Y. Overall evaluation by multi-parameters on maturity of crude oil from the Bozhong Sag, the Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2009, 31(4): 399-402, 408. (in Chinese with English abstract)
    [37]
    BUDZINSKI H, GARRIGUES P, CONNAN J, et al. Alkylated phenanthrene distributions as maturity and origin indicators in crude oils and rock extracts[J]. Geochimica et Cosmochimica Acta, 1995, 59(10): 2043-2056. doi: 10.1016/0016-7037(95)00125-5
    [38]
    邓倩, 张海祖, 王浩哲, 等. 塔里木盆地轮探1井寒武系轻质油成藏地球化学特征[J]. 地球化学, 2023, 52(1): 20-28.

    Deng Q, Zhang H Z, Wang H Z, et al. Geochemical characteristics of the Cambrian light crude oil accumulation in Luntan 1 well, Tarim Basin, NW China[J]. Geochimica, 2023, 52(1): 20-28. (in Chinese with English abstract)
    [39]
    张亚斌, 李晓斌, 王作栋, 等. 塔里木盆地塔河油田奥陶系原油及族组分碳同位素倒转成因分析[J]. 天然气地球科学, 2022, 33(8): 1332-1343.

    ZHANG Y B, LI X B, WANG Z D, et al. Origin of carbon isotopic inversion of Ordovician crude oil and group components in Tahe Oilfield, Tarim Basin[J]. Natural Gas Geoscience, 2022, 33(8): 1332-1343. (in Chinese with English abstract)
    [40]
    CLAYTON J L, BOSTICK N H. Temperature effects on kerogen and on molecular and isotopic composition of organic matter in Pierre Shale near an igneous Dike[J]. Organic Geochemistry, 1986, 10(1/3): 135-143.
    [41]
    杨海军, 于双, 张海祖, 等. 塔里木盆地轮探1井下寒武统烃源岩地球化学特征及深层油气勘探意义[J]. 地球化学, 2022, 49(6): 666-682.

    YANG H J, YU S, ZHANG H Z, et al. Geochemical characteristics of Lower Cambrian sources rocks from the deepest drilling of Well LT-1 and their significance to deep oil gas exploration of the Lower Paleozoic system in the Tarim Basin[J]. Geochimica, 2022, 49(6): 666-682. (in Chinese with English abstract)
    [42]
    汪洋, 张哨楠, 刘永立. 塔里木盆地塔河油田走滑断裂活动对油气成藏的控制作用: 以托甫39断裂带为例[J]. 石油实验地质, 2022, 44(3): 394-401.

    WANG Y, ZHANG S N, LIU Y L. Controls of strike-slip fault activities on hydrocarbon accumulation in Tahe Oilfield, Tarim Basin: A case study of TP 39 fault zone[J]. Petroleum Geology & Experiment, 2022, 44(3): 394-401. (in Chinese with English abstract)
    [43]
    张三, 金强, 赵深圳, 等. 塔河油田海西运动早期奥陶系岩溶地貌[J]. 新疆石油地质, 2020, 41(5): 527-534.

    ZHANG S, JIN Q, ZHAO S Z, et al. Ordovician karst paleogeomorphology during Early Hercynian movement in Tahe Oilfield[J]. Xinjiang Petroleum Geology, 2020, 41(5): 527-534. (in Chinese with English abstract)
    [44]
    吕艳萍, 吕晶, 徐想东, 等. 塔里木盆地塔河油田中下奥陶统鹰山组内幕储层成因机理[J]. 石油实验地质, 2021, 43(6): 1031-1037.

    LÜ Y P, LÜ J, XU X D, et al. Genetic mechanism of inner reservoirs of Yingshan Formation of Middle-Lower Ordovician in Tahe Oil Field, Tarim Basin[J]. Petroleum Geology & Experiment, 2021, 43(6): 1031-1037. (in Chinese with English abstract)
    [45]
    罗成. 塔里木盆地塔河油田中下奥陶统层控断裂发育特征与机理研究[D]. 北京: 中国地质大学(北京), 2017.

    LUO C. Characterization and mechanism of layer-controlled fracture development in the Middle and Lower Ordovician of the Tarim Basin's Tahe Oilfield[D]. Beijing: China University of Geosciences(Beijing), 2017. (in Chinese with English abstract)
    [46]
    赵永强, 云露, 王斌, 等. 塔里木盆地塔河油田中西部奥陶系油气成藏主控因素与动态成藏过程[J]. 石油实验地质, 2021, 43(5): 758-766.

    ZHAO Y Q, YUN L, WANG B, et al. Main constrains and dynamic process of Ordovician hydrocarbon accumulation, central and western Tahe Oil Field, Tarim Basin[J]. Petroleum Geology & Experiment, 2021, 43(5): 758-766. (in Chinese with English abstract)
    [47]
    曹自成, 唐大卿, 骆满嵩, 等. 塔里木盆地顺北地区中新生界断裂构造特征及演化[J]. 地质科技通报, 2023, 42(1): 226-238. doi: 10.19509/j.cnki.dzkq.2022.0176

    CAO Z C, TANG D Q, LUO M S, et al. Structural characteristics and tectonic evolution of Mesozoic-Cenozoic faults in the Shunbei area, Tarim Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(1): 226-238. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0176
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(315) PDF Downloads(68) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return