Citation: | WU Jing, GAN Yiqun, DU Yao, SUN Xiaoliang, HAN Peng. Seasonal variations in groundwater discharge and associated nutrient fluxes in Changhu Lake[J]. Bulletin of Geological Science and Technology, 2024, 43(5): 206-215. doi: 10.19509/j.cnki.dzkq.tb20230205 |
To assess contribution and seasonal variation in groundwater discharge (LGD) to lake water and nutrient budgets,
this study investigated Changhu Lake in the middle reaches of the Yangtze River. Field sampling was conducted during both the wet and dry seasons using multiple tracing techniques, including electrical conductivity (EC), stable isotope (2H and 18O), hydrochemical element (Ca2+ and Mg2+), and 222Rn isotope data. The 222Rn mass balance model was employed to quantify the LGD and associated nutrient fluxes in different seasons.
Results show that LGD rates during the wet and dry seasons were 64.52 mm/d and 14.95 mm/d, respectively, with significant differences between these seasons. Furthermore, during the wet and dry seasons, groundwater carried TN inputs of approximately 25.68×106 g/d and 5.58×106 g/d, respectively. The TP inputs were approximately 8.14×106 g/d and 0.17×106 g/d in the wet and dry seasons, respectively. The differences in the LGD rates between the wet and dry seasons lead to differences in groundwater carrying TN and TP inputs, and inputs of TP during the wet season is also influenced by agricultural activities during that period. Sronger precipitation and evaporation during the wet season drive greater LGD intensity and their carrying TN and TP fluxes.
The research can provide scientific reference for water resource management and aquatic ecosystem preservation efforts in the Changhu area.
[1] |
LEWANDOWSKI J, MEINIKMANN K, RUHTZ T, et al. Localization of lacustrine groundwater discharge(LGD) by airborne measurement of thermal infrared radiation[J]. Remote Sensing of Environment, 2013, 138: 119-125. doi: 10.1016/j.rse.2013.07.005
|
[2] |
MEINIKMANN K, NÜTZMANN G, LEWANDOWSKI J. Empirical quantification of lacustrine groundwater discharge: Different methods and their limitations[J]. Proceedings of the International Association of Hydrological Sciences, 2015, 365: 85-90. doi: 10.5194/piahs-365-85-2015
|
[3] |
MEINIKMANN K, LEWANDOWSKI J, NÜTZMANN G. Lacustrine groundwater discharge: Combined determination of volumes and spatial patterns[J]. Journal of Hydrology, 2013, 502: 202-211. doi: 10.1016/j.jhydrol.2013.08.021
|
[4] |
SHI X Y, LUO X, JIAO J J, et al. Dominance of evaporation on lacustrine groundwater discharge to regulate lake nutrient state and algal blooms[J]. Water Research, 2022, 219: 118620. doi: 10.1016/j.watres.2022.118620
|
[5] |
LEWANDOWSKI J, MEINIKMANN K, NÜTZMANN G, et al. Groundwater-the disregarded component in lake water and nutrient budgets: Part 2. Effects of groundwater on nutrients[J]. Hydrological Processes, 2015, 29(13): 2922-2955. doi: 10.1002/hyp.10384
|
[6] |
王焰新, 杜尧, 邓娅敏, 等. 湖底地下水排泄与湖泊水质演化[J]. 地质科技通报, 2022, 41(1): 1-10. doi: 10.19509/j.cnki.dzkq.2022.0001
WANG Y X, DU Y, DENG Y M, et al. Lacustrine groundwater discharge and lake water quality evolution[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 1-10. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0001
|
[7] |
SUN X L, DU Y, DENG Y M, et al. Spatial patterns and quantification of lacustrine groundwater discharge determined based on222Rn[J]. Water Resources Research, 2022, 58(7): e2022WR031977. doi: 10.1029/2022WR031977
|
[8] |
TECKLENBURG C, BLUME T. Identifying, characterizing and predicting spatial patterns of lacustrine groundwater discharge[J]. Hydrology and Earth System Sciences, 2017, 21(10): 5043-5063. doi: 10.5194/hess-21-5043-2017
|
[9] |
HAGERTHEY S E, CHARLES K W. Spatial variation in groundwater-related resource supply influences freshwater benthic algal assemblage composition[J]. Journal of the North American Benthological Society, 2005, 24(4): 807-819. doi: 10.1899/04-004.1
|
[10] |
LOWRY C S, WALKER J F, HUNT R J, et al. Identifying spatial variability of groundwater discharge in a wetland stream using a distributed temperature sensor[J]. Water Resources Research, 2007, 43(10): W10408.
|
[11] |
UMWALI E D, KURBAN A, ISABWE A, et al. Spatio-seasonal variation of water quality influenced by land use and land cover in Lake Muhazi[J]. Scientific Reports, 2021, 11(1): 17376. doi: 10.1038/s41598-021-96633-9
|
[12] |
CHOMICKI K M, TAYLOR W D, BROWN C J M, et al. Seasonal variation in the influence of environmental drivers on nearshore water quality along an urban northern Lake Ontario shoreline[J]. Journal of Great Lakes Research, 2022, 48(4): 914-926. doi: 10.1016/j.jglr.2022.04.011
|
[13] |
VIRHA R, BISWAS A K, KAKARIA V K, et al. Seasonal variation in physicochemical parameters and heavy metals in water of Upper Lake of Bhopal[J]. Bulletin of Environmental Contamination and Toxicology, 2011, 86(2): 168-174. doi: 10.1007/s00128-010-0172-0
|
[14] |
LEE D R. A device for measuring seepage flux in lakes and estuaries[J]. Limnology and Oceanography, 1977, 22(1): 140-147. doi: 10.4319/lo.1977.22.1.0140
|
[15] |
BLUME T, KRAUSE S, MEINIKMANN K, et al. Upscaling lacustrine groundwater discharge rates by fiber-optic distributed temperature sensing[J]. Water Resources Research, 2013, 49(12): 7929-7944. doi: 10.1002/2012WR013215
|
[16] |
LIAO F, WANG G C, YANG N, et al. Groundwater discharge tracing for a large ice-covered lake in the Tibetan Plateau: Integrated satellite remote sensing data, chemical components and isotopes(D, 18O, and 222Rn)[J]. Journal of Hydrology, 2022, 609: 127741. doi: 10.1016/j.jhydrol.2022.127741
|
[17] |
LUO X, JIAO J J, WANG X S, et al. Groundwater discharge and hydrologic partition of the lakes in desert environment: Insights from stable 18O/2H and radium isotopes[J]. Journal of Hydrology, 2017, 546: 189-203. doi: 10.1016/j.jhydrol.2017.01.017
|
[18] |
ROSENBERRY D, LEWANDOWSKI J, MEINIKMANN K, et al. Groundwater-the disregarded component in lake water and nutrient budgets: Part 1. Effects of groundwater on hydrology[J]. Hydrological Processes, 2015, 29(13): 2895-2921. doi: 10.1002/hyp.10403
|
[19] |
SCHMIDT A, STRINGER C E, HAFERKORN U, et al. Quantification of groundwater discharge into lakes using radon-222 as naturally occurring tracer[J]. Environmental Geology, 2009, 56(5): 855-863. doi: 10.1007/s00254-008-1186-3
|
[20] |
LIAO F, WANG G C, SHI Z M, et al. Estimation of groundwater discharge and associated chemical fluxes into Poyang Lake, China: Approaches using stable isotopes(δD and δ18O) and radon[J]. Hydrogeology Journal, 2018, 26(5): 1625-1638. doi: 10.1007/s10040-018-1793-3
|
[21] |
刘建峰, 张翔, 谢平, 等. 长湖水质演变特征及水环境现状评价[J]. 水资源保护, 2014, 30(4): 18-22.
LIU J F, ZHANG X, XIE P, et al. Variation of water quality and present water environment assessment of Changhu Lake[J]. Water Resources Protection, 2014, 30(4): 18-22. (in Chinese with English abstract)
|
[22] |
张振超, 梁莹, 许洁, 等. 高砷地下水中氮循环对砷释放过程的影响[J/OL]. 地球科学: 1-15. [2024-05-23].
ZHANG Z C, LIANG Y, XU J, et al. Effet of nitrogen cycling on arsenic release in groundwater with high arsenic content[J]. Journal of Earth Science. 1-15. [2024-05-23].
|
[23] |
WETZEL R G. Rivers and lakes: Their distribution, origins, and forms[A]//Wetzel R G. Limnology(Third Edition)[C]. San Diego: Academic Press, 2001: 15-42.
|
[24] |
郭坤, 彭婷, 罗静波, 等. 长湖浮游动物群落结构及其与环境因子的关系[J]. 海洋与湖沼, 2017, 48(1): 40-49.
GUO K, PENG T, LUO J B, et al. Community structure of zooplankton and the driving physicochemical factors in Changhu Lake[J]. Oceanologia et Limnologia Sinica, 2017, 48(1): 40-49. (in Chinese with English abstract)
|
[25] |
YANG X, ZHOU X H, SHANG G Y, et al. An evaluation on farmland ecological service in Jianghan Plain, China: From farmers' heterogeneous preference perspective[J]. Ecological Indicators, 2022, 136: 108665. doi: 10.1016/j.ecolind.2022.108665
|
[26] |
LIU J, GU W Q, LIU Y W, et al. Dynamic characteristics of net anthropogenic phosphorus input and legacy phosphorus reserves under high human activity: A case study in the Jianghan Plain[J]. Science of the Total Environment, 2022, 836: 155287. doi: 10.1016/j.scitotenv.2022.155287
|
[27] |
梁杏, 张婧玮, 蓝坤, 等. 江汉平原地下水化学特征及水流系统分析[J]. 地质科技通报, 2020, 39(1): 21-33. doi: 10.19509/j.cnki.dzkq.2020.0103
LIANG X, ZHANG J W, LAN K, et al. Hydrochemical characteristics of groundwater and analysis of groundwater flow systems in Jianghan Plain[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 21-33. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2020.0103
|
[28] |
甘义群, 王焰新, 段艳华, 等. 江汉平原高砷地下水监测场砷的动态变化特征分析[J]. 地学前缘, 2014, 21(4): 37-49.
GAN Y Q, WANG Y X, DUAN Y H, et al. Dynamic changes of groundwater arsenic concentration in the monitoring field site, Jianghan Plain[J]. Earth Science Frontiers, 2014, 21(4): 37-49. (in Chinese with English abstract)
|
[29] |
SUN X L, DU Y, DENG Y M, et al. Contribution of groundwater discharge and associated contaminants input to Dongting Lake, Central China, using multiple tracers(222Rn, 18O, Cl-)[J]. Environmental Geochemistry and Health, 2021, 43(3): 1239-1255. doi: 10.1007/s10653-020-00687-z
|
[30] |
CHENG K H, LUO X, JIAO J J. Two-decade variations of fresh submarine groundwater discharge to Tolo Harbour and their ecological significance by coupled remote sensing and radon-222 model[J]. Water Research, 2020, 178: 115866. doi: 10.1016/j.watres.2020.115866
|
[31] |
YI P, LUO H, CHEN L, et al. Evaluation of groundwater discharge into surface water by using Radon-222 in the source area of the Yellow River, Qinghai-Tibet Plateau[J]. Journal of Environmental Radioactivity, 2018, 192: 257-266. doi: 10.1016/j.jenvrad.2018.07.003
|
[32] |
WEBSTER I T, HANCOCK G J, MURRAY A S. Modelling the effect of salinity on radium desorption from sediments[J]. Geochimica et Cosmochimica Acta, 1995, 59(12): 2469-2476. doi: 10.1016/0016-7037(95)00141-7
|
[33] |
GONNEEA M E, MORRIS P J, DULAIOVA H, et al. New perspectives on radium behavior within a subterranean estuary[J]. Marine Chemistry, 2008, 109(3/4): 250-267.
|
[34] |
DIMOVA N T, BURNETT W C, CHANTON J P, et al. Application of radon-222 to investigate groundwater discharge into small shallow lakes[J]. Journal of Hydrology, 2013, 486: 112-122. doi: 10.1016/j.jhydrol.2013.01.043
|
[35] |
LUO X, KUANG X, JIAO J, et al. Evaluation of lacustrine groundwater discharge, hydrologic partitioning, and nutrient budgets in a proglacial lake in the Qinghai-Tibet Plateau: Using 222Rn and stable isotopes[J]. Hydrology and Earth System Sciences, 2018, 22(10): 5579-5598. doi: 10.5194/hess-22-5579-2018
|
[36] |
CORBETT D R, BURNETT W C, CABLE P H, et al. Radon tracing of groundwater input into Par Pond, Savannah River Site[J]. Journal of Hydrology, 1997, 203(1/4): 209-227.
|
[37] |
LUO X, JIAO J J, WANG X S, et al. Temporal 222Rn distributions to reveal groundwater discharge into desert lakes: Implication of water balance in the Badain Jaran Desert, China[J]. Journal of Hydrology, 2016, 534: 87-103. doi: 10.1016/j.jhydrol.2015.12.051
|
[38] |
COOK P G, FAVREAU G, DIGHTON J C, et al. Determining natural groundwater influx to a tropical river using radon, chlorofluorocarbons and ionic environmental tracers[J]. Journal of Hydrology, 2003, 277(1/2): 74-88.
|