Volume 43 Issue 5
Sep.  2024
Turn off MathJax
Article Contents
LIU Yujiao, DAI Heng, LI Yuedong, CUI Jiebo, WEN Zhang. Method of hierarchical global sensitivity analysis and its application in groundwater models[J]. Bulletin of Geological Science and Technology, 2024, 43(5): 216-224. doi: 10.19509/j.cnki.dzkq.tb20230308
Citation: LIU Yujiao, DAI Heng, LI Yuedong, CUI Jiebo, WEN Zhang. Method of hierarchical global sensitivity analysis and its application in groundwater models[J]. Bulletin of Geological Science and Technology, 2024, 43(5): 216-224. doi: 10.19509/j.cnki.dzkq.tb20230308

Method of hierarchical global sensitivity analysis and its application in groundwater models

doi: 10.19509/j.cnki.dzkq.tb20230308
More Information
  • Author Bio:

    LIU Yujiao, E-mail: Yujiaoliu0122@163.com

  • Corresponding author: DAI Heng, E-mail: daiheng@cug.edu.cn
  • Received Date: 31 May 2023
  • Accepted Date: 29 Jun 2023
  • Rev Recd Date: 28 Jun 2023
  • Objective

    Sensitivity analysis is an crucial tool in groundwater modelling for measuring the importance of various model inputs, enabling better allocation of limited funds and resources to reduce predictive uncertainty.

    Methods

    In this paper, we propose an enhanced hierarchical global sensitivity analysis method to quantify contribution of different types of input uncertainty to model outputs, and to assess the impact of each uncertain process on groundwater model predictions. To test and demonstrate the new method, a hypothetical case study of groundwater flow and contaminant transport is used to validate.

    Results

    The results indicate that model uncertainty is the main source of prediction uncertainty in this case, and uncertainty from the geological model is more important than that of other models.

    Conclusion

    The proposed method offers a more comprehensive sensitivity analysis for groundwater models. Compared with traditional parameter sensitivity analysis, the new method can consider more uncertain input factors, significantly improve computational efficiency, and provide more useful sensitivity information for model users and managers.

     

  • The authors declare that no competing interests exist.
  • loading
  • [1]
    SONG X M, ZHANG J Y, ZHAN C S, et al. Global sensitivity analysis in hydrological modeling: Review of concepts, methods, theoretical framework, and applications[J]. Journal of Hydrology, 2015, 523: 739-757. doi: 10.1016/j.jhydrol.2015.02.013
    [2]
    郑小康, 杨志兵. 岩溶含水层饱和-非饱和流动与污染物运移数值模拟[J]. 地质科技通报, 2022, 41(5): 357-366. doi: 10.19509/j.cnki.dzkq.2022.0211

    ZHENG X K, YANG Z B. Numerical simulation of saturated-unsaturated groundwater flow and contaminant transport in a karst aquifer[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 357-366. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2022.0211
    [3]
    董贵明, 王颖, 詹红兵, 等. 二维承压非稳定流水均衡区间的数值模拟[J]. 地质科技通报, 2023, 42(4): 75-82. doi: 10.19509/j.cnki.dzkq.tb20230028

    DONG G M, WANG Y, ZHAN H B, et al. Numerical simulation of the water budget interval for unsteady two-dimensional confined flow[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 75-82. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20230028
    [4]
    SALTELLI A, ALEKSANKINA K, BECKER W, et al. Why so many published sensitivity analyses are false: A systematic review of sensitivity analysis practices[J]. Environmental Modelling & Software, 2019, 114: 29-39.
    [5]
    宋美钰, 施小清, 康学远, 等. DNAPL场地污染通量升尺度预测的敏感性分析[J]. 地质科技通报, 2023, 42(2): 327-335. doi: 10.19509/j.cnki.dzkq.tb20220262

    SONG M Y, SHI X Q, KANG X Y, et al. Sensitivity analysis of upscaling prediction of the mass flux at DNAPL contaminated sites[J]. Bulletin of Geological Science and Technology, 2023, 42(2): 327-335. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.tb20220262
    [6]
    MAI J, CRAIG J R, TOLSON B A. Simultaneously determining global sensitivities of model parameters and model structure[J]. Hydrology and Earth System Sciences, 2020, 24(12): 5835-5858. doi: 10.5194/hess-24-5835-2020
    [7]
    SALTELLI A, ANNONI P, AZZINI I, et al. Variance based sensitivity analysis of model output: Design and estimator for the total sensitivity index[J]. Computer Physics Communications, 2010, 181(2): 259-270. doi: 10.1016/j.cpc.2009.09.018
    [8]
    PERZAN Z, BABEY T, CAERS J, et al. Local and global sensitivity analysis of a reactive transport model simulating floodplain redox cycling[J]. Water Resources Research, 2021, 57(12): 1-24.
    [9]
    DELL'OCA A, RIVA M, GUADAGNINI A. Moment-based metrics for global sensitivity analysis of hydrological systems[J]. Hydrology and Earth System Sciences, 2017, 21(12): 6219-6234. doi: 10.5194/hess-21-6219-2017
    [10]
    HÖGE M, GUTHKE A, NOWAK W. The hydrologist's guide to Bayesian model selection, averaging and combination[J]. Journal of Hydrology, 2019, 572: 96-107. doi: 10.1016/j.jhydrol.2019.01.072
    [11]
    刘玉珍, 王本德, 姜英震. 基于可变水文地质参数的地下水系统数学模型[J]. 水科学进展, 2009, 20(3): 398-402.

    LIU Y Z, WANG B D, JIANG Y Z. Mathematical model for groundwater system based on the variable hydro-geological parameters[J]. Advances in Water Science, 2009, 20(3): 398-402. (in Chinese with English abstract)
    [12]
    施小清, 吴吉春, 吴剑锋, 等. 多个相关随机参数的空间变异性对溶质运移的影响[J]. 水科学进展, 2012, 23(4): 509-515.

    SHI X Q, WU J C, WU J F, et al. Effects of the heterogeneity of multiple correlated random parameters on solute transport[J]. Advances in Water Science, 2012, 23(4): 509-515. (in Chinese with English abstract)
    [13]
    史良胜, 杨金忠, 林琳, 等. 基于尺度因素的地下水随机分析[J]. 水科学进展, 2007, 18(1): 39-43.

    SHI L S, YANG J Z, LIN L, et al. Stochastic analysis of groundwater based on scale factor[J]. Advances in Water Science, 2007, 18(1): 39-43. (in Chinese with English abstract)
    [14]
    DAI H, YE M. Variance-based global sensitivity analysis for multiple scenarios and models with implementation using sparse grid collocation[J]. Journal of Hydrology, 2015, 528: 286-300.
    [15]
    曾献奎, 王栋, 吴吉春. 地下水流概念模型的不确定性分析[J]. 南京大学学报(自然科学版), 2012, 48(6): 746-752.

    ZENG X K, WANG D, WU J C. Uncertainty analysis of groundwater flow conceptual model[J]. Journal of Nanjing University(Natural Sciences), 2012, 48(6): 746-752. (in Chinese with English abstract)
    [16]
    DELL'OCA A, RIVA M, GUADAGNINI A. Global sensitivity analysis for multiple interpretive models with uncertain parameters[J]. Water Resources Research, 2020, 56(2): 1-20. http://www.xueshufan.com/publication/3004180945
    [17]
    MAI J, TOLSON B A. Model variable augmentation(MVA) for diagnostic assessment of sensitivity analysis results[J]. Water Resources Research, 2019, 55(4): 2631-2651.
    [18]
    DAI H, CHEN X Y, YE M, et al. Using Bayesian networks for sensitivity analysis of complex biogeochemical models[J]. Water Resources Research, 2019, 55(4): 3541-3555.
    [19]
    BIANCHI JANETTI E, GUADAGNINI L, RIVA M, et al. Global sensitivity analyses of multiple conceptual models with uncertain parameters driving groundwater flow in a regional-scale sedimentary aquifer[J]. Journal of Hydrology, 2019, 574: 544-556.
    [20]
    MAI J, CRAIG J R, TOLSON B A, et al. The sensitivity of simulated streamflow to individual hydrologic processes across North America[J]. Nature Communications, 2022, 13(1): 455.
    [21]
    LIU H F, DAI H, NIU J, et al. Hierarchical sensitivity analysis for a large-scale process-based hydrological model applied to an Amazonian watershed[J]. Hydrology and Earth System Sciences, 2020, 24(10): 4971-4996.
    [22]
    DRAPER D, PEREIRA A, PRADO P, et al. Scenario and parametric uncertainty in GESAMAC: A methodological study in nuclear waste disposal risk assessment[J]. Computer Physics Communications, 1999, 117(1/2): 142-155.
    [23]
    DRAPER D. Assessment and propagation of model uncertainty[J]. Journal of the Royal Statistical Society Series B(Statistical Methodology), 1995, 57(1): 45-70.
    [24]
    HOCK R. Temperature index melt modelling in mountain areas[J]. Journal of Hydrology, 2003, 282(1/4): 104-115.
    [25]
    KUSTAS W P, RANGO A, UIJLENHOET R. A simple energy budget algorithm for the snowmelt runoff model[J]. Water Resources Research, 1994, 30(5): 1515-1527.
    [26]
    DAI H, ZHANG F Q, YE M, et al. A computationally efficient method for estimating multi-model process sensitivity index[J]. Water Resources Research, 2022, 58(10): 1-21.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(108) PDF Downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return