Turn off MathJax
Article Contents
XI Wang,CHEN Yiwei,ZHANG Wenguang,et al. Recognition of structural plane and stability analysis of high steep rocky slope based on 3D point clouds[J]. Bulletin of Geological Science and Technology,2025,${article_volume}(0):1-10 doi: 10.19509/j.cnki.dzkq.tb20230667
Citation: XI Wang,CHEN Yiwei,ZHANG Wenguang,et al. Recognition of structural plane and stability analysis of high steep rocky slope based on 3D point clouds[J]. Bulletin of Geological Science and Technology,2025,${article_volume}(0):1-10 doi: 10.19509/j.cnki.dzkq.tb20230667

Recognition of structural plane and stability analysis of high steep rocky slope based on 3D point clouds

doi: 10.19509/j.cnki.dzkq.tb20230667
More Information
  • Author Bio:

    E-mail:55911275@qq.com

  • Corresponding author: E-mail:zhoubohust@hust.edu.cn
  • Received Date: 01 Dec 2023
  • Accepted Date: 29 Mar 2024
  • Rev Recd Date: 21 Mar 2024
  • Available Online: 27 Aug 2024
  • Objective

    The distribution of structural planes plays a significant role in determining the engineering and mechanical properties of rock masses. Accurately obtaining information about structural planes is crucial for analyzing the characteristics and stability of rock masses.

    Methods

    Three-dimensional point cloud data of a steep rock slope was acquired using 3D laser scanning technology. After the filtering preprocessing of the point cloud data, the open-source program Discontinuity Set Extractor (DSE) was then used to semi-automatically recognize and classify the point cloud data, obtaining key parameters and clustering information of the slope rock mass structural planes, such as attitude, trace length, and spacing. By fitting the point cloud clustering information, a probability distribution model was created, and a Discrete Fracture Network (DFN) model was established. Furthermore, a three-dimensional block discrete element model of the steep slope was developed using the "Rhino-Griddle-3DEC" integrated modeling method based on the point cloud data. The model investigated the stability of slope and potential failure area.

    Results

    The results show that under the gravity condition, the safety factor of the whole slope is about 1.5 and the potential unstable area is the dangerous rock mass located on the top of the slope.

    Conclusion

    Therefore, the structural plane parameters identified by this method can better reflect the engineering properties of the rock mass, providing important guidance for the analysis and evaluation of the stability of steep rock slopes.

     

  • loading
  • [1]
    陈洪江. 土木工程地质[M]. 第2版. 北京:中国建材工业出版社,2010.

    CHEN H J. Civil engineering geology[M]. Second Edition. Beijing:China Building Material Industry Publishing House,2010. (in Chinese with English abstract
    [2]
    刘佑荣,唐辉明. 岩体力学[M]. 北京:化学工业出版社,2009.

    LIU Y R,TANG H M. Rock mechanics[M]. Beijing:Chemical Industry Press,2009. (in Chinese with English abstract
    [3]
    董秀军. 三维空间影像技术在地质工程中的综合应用研究[D]. 成都:成都理工大学,2015.

    DONG X J. Research of comprehensive application of three-dimensional image technology in geologic engineering[D]. Chengdu:Chengdu University of Technology,2015. (in Chinese with English abstract
    [4]
    董秀军,黄润秋. 三维激光扫描技术在高陡边坡地质调查中的应用[J]. 岩石力学与工程学报,2006,25(增刊2):3629-3635.

    DONG X J,HUANG R Q. Application of 3D laser scanning technology to geologic survey of high and steep slope[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(S2):3629-3635. (in Chinese with English abstract
    [5]
    FARDIN N,FENG Q,STEPHANSSON O. Application of a new in situ 3D laser scanner to study the scale effect on the rock joint surface roughness[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(2):329-335. doi: 10.1016/S1365-1609(03)00111-4
    [6]
    王鑫. 基于地面激光扫描的裂缝面提取及构造古剪应变张量的聚类分析[D]. 杭州:浙江大学,2019.

    WANG X. The extraction of fracture surfaces based on terrestrial laser scanning and the clustering analysis of tectonic paleo shear strain tensors[D]. Hangzhou:Zhejiang University,2019. (in Chinese with English abstract
    [7]
    HACK H R G K,AZZAM R,CHARLIER R. Engineering geology for infrastructure planning in Europe:A European perspective[M]. Berlin; New York:Springer,2004.
    [8]
    赵佳斌. 基于摄影测量三维点云的结构面识别及三维渗流管网模型研究[D]. 南京:南京理工大学,2018.

    ZHAO J B. Structural plane identification and 3D seepage pipe network model based on photogrammetry 3D point cloud[D]. Nanjing:Nanjing University of Science and Technology,2018. (in Chinese with English abstract
    [9]
    HE B S,DING L Q,SUN P. The application of 3D laser scanning technology in rock joint sets identification[J]. Journal of China Institute Water Resource and Hydropower Research,2007,5(1):43-48.
    [10]
    朱云福. 基于三维激光扫描数据的岩体结构面识别方法研究及系统研制[D]. 北京:中国地质大学(北京),2012.

    ZHU Y F. The theory and system development of discontinuity identification based on 3D laser scanning data[D]. Beijing:China University of Geosciences (Beijing),2012. (in Chinese with English abstract
    [11]
    葛云峰,夏丁,唐辉明,等. 基于三维激光扫描技术的岩体结构面智能识别与信息提取[J]. 岩石力学与工程学报,2017,36(12):3050-3061.

    GE Y F,XIA D,TANG H M,et al. Intelligent identification and extraction of geometric properties of rock discontinuities based on terrestrial laser scanning[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(12):3050-3061. (in Chinese with English abstract
    [12]
    徐俊,谢礼明,刘宇,等. 基于三维激光扫描的岩体结构面识别与块体分析[J]. 人民长江,2021,52(增刊1):309-312.

    XU J,XIE L M,LIU Y,et al. Rock structural face identification and block analysis based on 3D laser scanning[J]. Yangtze River,2021,52(S1):309-312. (in Chinese with English abstract
    [13]
    陈娜. 基于三维激光扫描的边坡岩体结构信息提取和变形监测研究[D]. 武汉:武汉大学,2018.

    CHEN N. The structural information and deformation monitoring of rock slope based on 3D Laser Scanning technology[D]. Wuhan:Wuhan University,2018. (in Chinese with English abstract
    [14]
    宁浩. 基于三维激光扫描的岩体结构面识别与信息提取[D]. 成都:成都理工大学,2020.

    NING H. Recognition and information extraction of rock mass structural plane based on 3D laser scanning[D]. Chengdu:Chengdu University of Technology,2020. (in Chinese with English abstract
    [15]
    许度,冯夏庭,李邵军,等. 激光扫描隧洞变形与岩体结构面测试技术及应用[J]. 岩土工程学报,2018,40(7):1336-1343.

    XU D,FENG X T,LI S J,et al. In-situ testing technique for tunnel deformation and structural plane of rock mass based on contactless laser scanning method and its application[J]. Chinese Journal of Geotechnical Engineering,2018,40(7):1336-1343. (in Chinese with English abstract
    [16]
    吴翔. 基于三维激光点云的岩体结构面几何信息提取研究[D]. 长春:吉林大学,2022.

    WU X. Research on geometric information extraction of rock mass discontinuity based on 3D laser point cloud[D]. Changchun:Jilin University,2022. (in Chinese with English abstract
    [17]
    FENG Q,FARDIN N,JING L,et al. A new method for in situ non-contact roughness measurement of large rock fracture surfaces[J]. Rock Mechanics and Rock Engineering,2003,36(1):3-25. doi: 10.1007/s00603-002-0033-1
    [18]
    ARMESTO J,ORDóñEZ C,ALEJANO L,et al. Terrestrial laser scanning used to determine the geometry of a granite boulder for stability analysis purposes[J]. Geomorphology,2009,106(3/4):271-277.
    [19]
    ABELLáN A,VILAPLANA J M,CALVET J,et al. Rockfall monitoring by Terrestrial Laser Scanning:Case study of the basaltic rock face at Castellfollit de la Roca (Catalonia,Spain)[J]. Natural Hazards and Earth System Sciences,2011,11(3):829-841. doi: 10.5194/nhess-11-829-2011
    [20]
    RIQUELME A J,ABELLáN A,TOMáS R,et al. A new approach for semi-automatic rock mass joints recognition from 3D point clouds[J]. Computers & Geosciences,2014,68:38-52.
    [21]
    RIQUELME A J,ABELLáN A,TOMáS R. Discontinuity spacing analysis in rock masses using 3D point clouds[J]. Engineering Geology,2015,195:185-195. doi: 10.1016/j.enggeo.2015.06.009
    [22]
    KONG D H,WU F Q,SAROGLOU C. Automatic identification and characterization of discontinuities in rock masses from 3D point clouds[J]. Engineering Geology,2020,265:105442. doi: 10.1016/j.enggeo.2019.105442
    [23]
    杨辉. 基于三维激光扫描点云数据的隧道掌子面岩体结构面识别方法研究[D]. 成都:西南交通大学,2020.

    YANG H. Method for identification of rock discontinuities in tunnel face from 3D point clouds based on 3D laser scanning[D]. Chengdu:Southwest Jiaotong University,2020. (in Chinese with English abstract
    [24]
    官东林,文国军,王玉丹,等. 基于线激光扫描的岩石激光钻孔的三维重建和可视化[J]. 地质科技通报,2021,40(3):173-183.

    GUAN D L,WEN G J,WANG Y D,et al. 3D reconstruction and visualization for laser drilling hole on rock based on line laser scanning[J]. Bulletin of Geological Science and Technology,2021,40(3):173-183. (in Chinese with English abstract
    [25]
    张野,陈金桥,李炎隆. 基于多深度模型的钻孔结构面智能识别与量化分析[J]. 地质科技通报,2023,42(6):31-41.

    ZHANG Y,CHEN J Q,LI Y L. Intelligent recognition and quantitative analysis of borehole hydraulic geological images utilizing multiple deep learning models[J]. Bulletin of Geological Science and Technology,2023,42(6):31-41. (in Chinese with English abstract
    [26]
    YE Z,XU Q,LIU Q,et al. Application of unmanned aerial vehicle oblique photogrammetry to investigation of high slope rock structure[J]. Geomatics and Information Science of Wuhan University,2020,45(11):1739-1746.
    [27]
    WANG X,ZOU L J,SHEN X H,et al. A region-growing approach for automatic outcrop fracture extraction from a three-dimensional point cloud[J]. Computers & Geosciences,2017,99:100-106.
    [28]
    GUO J T,LIU S J,ZHANG P N,et al. Towards semi-automatic rock mass discontinuity orientation and set analysis from 3D point clouds[J]. Computers & Geosciences,2017,103:164-172.
    [29]
    梁玉飞,裴向军,崔圣华,等. 基于地面三维激光点云的滑坡破坏边界岩体结构特征分析[J]. 岩石力学与工程学报,2021,40(6):1209-1225.

    LIANG Y F,PEI X J,CUI S H,et al. Analysis of rock mass structure characteristics of landslide boundaries based on ground 3D laser point cloud[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(6):1209-1225. (in Chinese with English abstract
    [30]
    王培涛,覃拓,黄正均,等. 基于三维点云的岩体结构面信息快速化识别方法研究[J]. 岩石力学与工程学报,2021,40(3):503-519.

    WANG P T,QIN T,HUANG Z J,et al. Fast identification of geometric properties of rock discontinuities based on 3D point cloud[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(3):503-519. (in Chinese with English abstract
    [31]
    DAGHIGH H,TANNANT D D,DAGHIGH V,et al. A critical review of discontinuity plane extraction from 3D point cloud data of rock mass surfaces[J]. Computers & Geosciences,2022,169:105241.
    [32]
    GE Y F,CAO B,TANG H M. Rock discontinuities identification from 3D point clouds using artificial neural network[J]. Rock Mechanics and Rock Engineering,2022,55(3):1705-1720. doi: 10.1007/s00603-021-02748-w
    [33]
    宋琨,孙驰,安冬,等. 数字钻孔全景影像中结构面特征智能识别方法[J]. 地质科技通报,2020,39(5):17-22.

    SONG K,SUN C,AN D,et al. Intelligent identification method for rock discontinuities properties by digital borehole panoramic images[J]. Bulletin of Geological Science and Technology,2020,39(5):17-22. (in Chinese with English abstract
    [34]
    荆少东,许国辉,吴尚彬,等. 基于三维精细化数值模型的地下油库水封安全评价[J]. 地质科技通报,2023,42(6):1-11.

    JING S D,XU G H,WU S B,et al. Assessment of the water-sealed safety of underground crude oil storage based on a three-dimensional refined numerical model[J]. Bulletin of Geological Science and Technology,2023,42(6):1-11. (in Chinese with English abstract
    [35]
    LI Y C,CHEN J P,ZHOU F J,et al. Stability evaluation of rock slope based on discrete fracture network and discrete element model:A case study for the right bank of Yigong Zangbu Bridge[J]. Acta Geotechnica,2022,17(4):1423-1441. doi: 10.1007/s11440-021-01369-5
    [36]
    LIU B,HE K,HAN M,et al. Dynamic process simulation of the Xiaogangjian rockslide occurred in shattered mountain based on 3DEC and DFN[J]. Computers and Geotechnics,2021,134:104122. doi: 10.1016/j.compgeo.2021.104122
    [37]
    JIA L,CAI J S,WU L,et al. Influence of fracture geometric characteristics on fractured rock slope stability[J]. Applied Sciences,2023,13(1):236.
    [38]
    ZHANG H J,WU S C,ZHANG Z X,et al. Reliability analysis of rock slopes considering the uncertainty of joint spatial distributions[J]. Computers and Geotechnics,2023,161:105566. doi: 10.1016/j.compgeo.2023.105566
    [39]
    蒋水华,陈佳栋,邹宗毅,等. 基于通用椭圆盘模型及3DEC实现的节理岩质边坡稳定性分析[J]. 岩石力学与工程学报,2023,42(7):1610-1622.

    JIANG S H,CHEN J D,ZOU Z Y,et al. Stability analysis of jointed rock slopes based on a universal elliptical disc model and its realization in 3DEC[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(7):1610-1622. (in Chinese with English abstract
    [40]
    ZHANG W M,QI J B,WAN P,et al. An easy-to-use airborne LiDAR data filtering method based on cloth simulation[J]. Remote Sensing,2016,8(6):501. doi: 10.3390/rs8060501
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(284) PDF Downloads(63) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return